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Chapter 1. Introduction 

 

1.1   Obesity and adipose tissue 

Obesity is a multidimensional metabolic disorder linked to an increased risk of several 

common and severe diseases, including insulin resistance, type 2 diabetes, cardiovascular 

diseases, and certain types of cancer (1). Recent epidemiologic studies have estimated that 

obesity is the leading contributor to the overall disease burden in the US (2, 3), emphasizing its 

life-threatening complications. Obesity is characterized by increased lipid storage and adipose 

tissue mass (4). However, the impact of obesity varies widely among individuals, even with a 

similar degree of body mass index (BMI) (5). Increasing data suggest that dysfunction of 

adipose tissue, rather than the level of total adiposity, is a key indicator of metabolic disorders (6, 

7).   

Adipose tissue has evolved to store excess energy by hyperplastic and/or hypertrophic 

growth; however, under obesogenic conditions, such as chronic nutritional oversupply, adipose 

tissue is often unable to meet the demand for additional lipid storage. In many cases, limited 

lipid storage capacity and expandability of adipose tissue cause ectopic accumulation of lipid 

and its by-products in major metabolic organs (liver, muscle, pancreatic β-cells) and 

subsequently lead lipotoxic side effects, including activation of inflammatory pathways, cellular 
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dysfunction and disturbed systemic metabolism (8). Within this context, lipotoxicity resulting 

from dysfunctional adipose tissue is thought to be one of the key events that underlie the 

development of obesity-induced insulin resistance and metabolic disease (9, 10).  

In general, two therapeutic strategies have been applied to reverse from lipotoxicity: first, 

to optimize the anabolic function of adipose tissue, thereby rerouting lipid from lipid-intolerant 

organs to fat tissue; or second, to increase the catabolic function of adipose tissue to reduce fat 

mass. For example, the thiazolidinedione (TZD) class of anti-diabetic drugs has been clinically 

used to restore adipose tissue insulin sensitivity, in part by enhancing fat deposition (11). In 

addition, TZDs normalize secretion of multiple adipokines to reduce inflammatory signaling and 

improve metabolic profiles (9, 11). Another attractive approach is to augment energy 

expenditure by promoting oxidative metabolism in adipose tissue (12). The increased 

metabolism would function to regulate body weight and temperature (13-15). 3-adrenergic 

receptor (ADRB3) agonists have been reported to stimulate thermogenesis, increase metabolic 

rate, and have anti-obesity and anti-diabetic effects in rodent models (3, 16-20).  

In theory, it may be possible to improve the metabolic character of adipose tissue by 

activating progenitors to generate new adipocytes that ultimately have improved catabolic or 

anabolic characteristics. (21). At the present time, identity of the adipocyte progenitors and the 

mechanisms that control the progenitor fate and behaviors were poorly characterized. Therefore, 
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improved knowledge on adipocyte progenitors is required to address the current epidemic of 

obesity and its related diseases. Specifically, recruitment of beneficial adipocytes by controlling 

progenitor dynamics would be one of the strategies to prevent or treat obesity and its associated 

diseases. 

 

1.2   White and brown adipose tissue 

Adipose tissue has been classically defined into two functional and histological types: 

white and brown, which differ in several important properties (22). White adipose tissue (WAT) 

stores excess calories as triglycerides and releases energy sources as fatty acids and glycerol 

for systemic use by other organs (23). WAT can be subcategorized into subcutaneous and 

visceral depots. Visceral depots are more strongly associated with metabolic complications, 

while subcutaneous beds appear protective against these metabolic syndromes (23). In contrast, 

brown adipose tissue (BAT) is primarily a thermoregulatory organ (22). It contains an ample 

number of mitochondria and is characterized by a dense vascular network and nerve supply 

(22). Since BAT provides heat to the body in response to adrenergic input via the blood stream, 

these structural features are important for this organ to exert its function to protect the organism 

from a cold environment (24). The thermogenesis of BAT is critically related to uncoupling 

protein 1 (UCP1), which uncouples proton gradients from ATP synthesis (22). UCP1 is 
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specifically expressed in BAT, and is considered to be a prototype BAT marker.  

The ability of BAT to burn calories may enable it to be manipulated for novel anti-obesity 

strategies (3, 12, 15, 18). To support this view, it has been estimated that, if fully activated, 50 g 

of brown adipocytes would be sufficient to burn 20% of the daily energy intake (15). This 

potential power has been substantiated by the demonstration of major roles of BAT in TG 

clearance and glucose disposal and consequent improvement of metabolic profiles in rodent 

models (16, 19). Increasing evidence from clinical studies suggests that BAT mass and activity 

inversely correlate with BMI and adipose tissue mass (25-27). The potential role of this organ in 

human metabolism suggests that activation of BAT might be a therapeutic tool with multiple 

implications in metabolic disease (18, 28, 29).  

 

1.3   Cellular plasticity of adipose tissue. 

WAT possesses exceptional plasticity, enabling dynamic modulation of its metabolic and 

cellular characteristics in response to various stimuli. For example, WAT can increase adipocyte 

mass and number dramatically under high fat feeding (30, 31), and it can regenerate in the 

setting of injury (32) or surgical partial removal (33). PPAR agonists are known to expand WAT 

by recruiting progenitors and promoting adipogenesis of preadipocytes (34, 35). In addition, 
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WAT has a capacity to transition between white and brown, manifesting significant changes in 

metabolic activity and functional phenotype. There are multiple reports demonstrating that 

traditional white fat depots can adopt brown fat-like characteristics under certain physiological 

and pharmacological conditions, such as cold exposure and β-adrenergic stimulation (14, 24, 

36-43). Since β3-adrenergic receptors (ADRB3) are mainly expressed in adipose tissues, 

selective ADRB3 agonists, such as CL316.243 (CL), have been utilized to study β-adrenergic 

control of WAT. The WAT of chronically CL-treated mice becomes darker in color and 

undergoes a metabolic switch to a more brown-like phenotype. This remodeling includes 

catabolic gene transcription, mitochondrial biogenesis and elevation of metabolic rate, (Figure 

1).(44).  

One of the most prominent events of catabolic remodeling is the appearance of UCP1 

expressing multilocular brown adipocytes as clusters diffused within WAT (14). It remains 

unclear, however, which cellular components give rise to these inducible brown adipocytes (iBA). 

Current views on cellular plasticity suggest that alterations in cellular identity might occur 

through genetic reprogramming of adult somatic cells: by conversion from one mature cell type 

to another, called transdifferentiation; or reversion to a stem cell-like or a less-differentiated state 

with subsequent alternative differentiation, called dedifferentiation (45). Evidence from detailed 

morphological analysis on iBA at ultrastructural levels suggest that conversion from mature WA 
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to BA during cold acclimatization and -adrenergic stimulation is achieved by transdifferentiation 

processes (44, 46).  

 

Figure 1. WAT remodeling during ADRB3 activation.  

(A) Molecular mechanisms that mediate catabolic remodeling of adipose tissue druing ADRB3 

stimulation. Downstream signals mediated by PKA activation upregulate genes involved in 

mitochondrial biogenesis, and fatty acid oxidation. PKA can directly increase HSL (hormone 

sensitive lipase) activity. (B) Multilocular adipocytes that appear in eWAT during CL treatment 

come from proliferating cells.  BrdU immunohistochemistry showing numerous multilocular 

adipocytes containing BrdU-positive nuclei (arrows). Nuclei of BrdU-positive adipocytes were 

defined by surrounding internal lipid droplets. Paraffin sections were counter-stained with 

hematoxylin. Bar = 25 m (43). 

 

Although mature WA can undergo transdifferentiation to generate iBA, this mechanism 

cannot explain newly-born iBA from proliferating cells, because WA are post-mitotic. As shown 

in Figure 1, when CL-treated mice were co-infused with BrdU for 7 days to label proliferating 

cells, 20% of brown-like adipocytes in WAT were positive for BrdU, indicating that proliferating 

progenitors give rise to iBA by ADRB3 stimulation (43); however, the identity and biology of iBA 
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progenitors are unknown.  

1.4   Developmental origin of brown and white adipose tissue 

Recently, several elegant lineage tracing studies enabled breakthrough findings on 

developmental origin of BAT, and discovered common progenitors for muscle and BAT (47, 48). 

In vivo fate-mapping has shown that progenitors derived from the central dermomyotome 

(paraxial mesoderm) give rise to the interscapular BAT (48), suggesting that the interscapular 

brown fat and skeletal muscle may share a common developmental ancestry. In support of this 

notion, lineage-tracing studies have established that early myogenic factor (MYF5)-expressing 

progenitors can give rise to both skeletal muscle and BAT in the interscapular and perirenal 

depots (47). Moreover, the iBA emerging in WAT in response to ADRB3 stimulation never 

expresses MYF5, suggesting that classical BA that reside in interscapular BAT and iBA in WAT 

originate from distinct lineages (47).  

In a study conducted by Graff’s group, the direct precursors of WA in developing mouse 

WAT were identified as a population that express PPAR and reside on the periphery of blood 

vessels in WAT (49). These cells differentiate into adipocytes in vitro and proliferate and give 

rise to adipocytes after transplantation. This population expresses preadipocyte markers (Pref1, 

GATA3). These cells were further defined as being in the mural compartment of vasculature, 

based on their pericyte marker expressions (PDGFR , NG2). A recent study done by this group 
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also demonstrated that dynamic and molecular phenotype of PPAR+ pericyte-like progenitors 

were regulated by thiazolidinedione (TZD) treatment (50). However, it is not known whether 

these committed precursors of WA serve as adult adipose stem cells in response to other 

adipogenic conditions or ADRB3 stimulation.  

 

1.5  Adipocyte progenitors in adult adipose tissue 

Adipocytes form during the perinatal period as well as during homeostatic turnover in 

adult WAT throughout life. In addition to the normal growth, adipocytes are highly dynamic, 

expanding in response to various stimuli (51). These cellular responses enable adipose tissues 

to expand to accommodate increased energy intake and to serve as a crucial player in a 

complex network balancing energy homeostasis. The adult fat growth pattern is due to both 

changes in the number and size of adipocytes (23) . The hyperplasic feature of adipose tissue 

highlights the potential presence of a stem compartment, since in cases where the differentiated 

cells, such as adipocytes, are postmitotic, tissue regeneration and turnover depends entirely on 

stem cell differentiation (52). Therefore, to explain the mechanism of adipose tissue turnover 

and hyperplasia, it has been hypothesized that renewal occurs via an adult stem cell residing in 

the stromal vascular fraction (SVF) of adipose tissue. 
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With the demonstration of the presence of mesenchymal stem cells (MSC) in SVF from 

adult adipose tissue including human and mouse tissue (53, 54), SVF of adipose tissue has 

been extensively studied as potential progenitor pool. MSC are known to be common 

progenitors for bone, cartilage and adipose tissue during development (55). These MSC found 

in multiple types of adult tissues have been proposed to function as tissue specific stem cells, 

However, this assumption still lacks good experimental proofs in vivo setting, partly due to lack 

of MSC specific markers that enable in vivo lineage tracing (54, 55). Therefore, how the putative 

MSC contribute to the maintenance or remodeling/ repair of adult tissues has not been defined.   

In the search of adipocyte progenitor markers, a recent study on adult adipose stem cells 

performed by Friedman’s group shed light on the molecular signature of white adipose stem 

cells/progenitors in adult mice (56). Friedman’s group used FACS to isolate a Lin-

CD29+CD34+Sca-1+CD24+ population of cells with an increased capacity for differentiation into 

adipocytes over heterogeneous stromal vascular fraction, claiming that these populations are 

adult adipose stem cells (56). When transplanted into a lipodystropic mouse, these cells 

reconstitute the epidydimal fat pad, improve the metabolic profile and correct lipodystrophy-

related symptoms.   

In addition to WAT pads, WA can be formed in numerous tissues, including muscles. A 

recent work has addressed the question of whether ectopic adipocytes in skeletal muscle arise 
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from a population developmentally distinct from myogenic progenitors (57, 58). These 

investigators identified a new population, PDGFRα+ cells present in skeletal muscle, as the 

origin of intramuscular adipocytes. While PDGFRα+ cells differentiated into adipocytes in 

degenerative muscle in vivo, they fail to turn into adipocytes in regenerative muscle, implying 

that different microenvironments affect their fate.  

While WA progenitors which reside in WAT and muscle have been found as mentioned 

above, there are no studies that identify progenitors that give rise to nascent brown-like 

adipocytes in WAT upon ADRB3 stimulation. 

 Table 1 Summary of distinct characteristics of adipocyte progenitors (AP) 

Phenotype  Developmental WAP AP in adult WAT  Ectopic AP in Muscle 

(PDGFRA+ cells)  

Cell surface marker  

CD24  ND  +  -  

CD34  +  +  +  

Sca1  +  +  +  

PDGFRα  ND  ND  +  

PDGFRβ  +  ND  -  

Anatomical location Mural compartment ND Interstitial space 

Number of cells  50% 0.8%   
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1.6  PDGFRα in developmental biology 

The PDGF family consists of two receptor genes, PDGFRα and PDGFRβ and four ligand 

genes, PDGFA, B, C and D (59). These four PDGF chains act as disulphide-linked dimers, and 

five different dimeric isoforms have been described so far; PDGF-AA, PDGFAB, PDGF-BB, 

PDGF-CC and PDGF-DD (60). PDGF-AA and PDGF-CC exclusively act through PDGFRα, 

while PDGF-DD activates PDGFRβ. PDGF-BB can bind and activate either receptor homodimer 

(PDGFRαα or PDGFRββ) and heterodimer (PDGFRαβ) (61). The PDGF ligands exert their 

function by causing dimerization and auto-phosphorylation of the PDGF receptors (59). This, in 

turn, results in activation of a multitude of intracellular signaling cascades. The outcomes of 

these signaling events are diverse and include proliferation, migration, and survival (59, 61). 

PDGFRα+ cells exist throughout the body at various developmental stages. During early 

development, PDGFRα and PDGFA are involved in broad spectrum of development, including 

embryogenesis, neural crest formation, central nerves system and several organogenesis (61). 

In adult beings, PDGFRα expression seems more confined in specific progenitor populations. 

For instance, PDGFRα+ cells in brain are known as oligodendrocyte progenitor cells (62-64). As 

mentioned above, muscle-derived PDGFRα+ cells have shown their adipogenic potential and 

identified a progenitor population that is responsible for ectopic adipocyte formation in muscle 
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(57, 58, 65). In addition, PDGFRα expression in mesenchymal stem cells has been reported in 

vitro culture system (55). Although no studies investigate the involvement of PDGFRα signaling 

in adipose tissue development and remodeling, PDGFRα activation has been shown to 

stimulate proliferation and inhibit adipogenic differentiation in cultured preadipocytes (66, 67).  

 

1.7   Progenitor niches 

A stem cell niche, a concept introduced by Scholfield (68), is an organized structural unit 

specialized to facilitate cell-fate decisions in a proper spatio-temporal manner (69). Recent 

studies have elucidated the important role of niche in adult stem cell biology, including 

hematopoietic, intestinal crypt, hair follicle and neural stem cells (70). Cell-cell contacts and 

interactions in stem cell niches also involve chemokine signaling and alterations in extracellular 

matrix (ECM). It is likely that signals from adipose stromal vascular units surrounding 

progenitors mediate cell fate decisions. Supporting this idea, in our preliminary findings, adipose 

cellular components change dramatically in number and cell type during the course of β-

adrenergic remodeling. Especially, macrophages are recruited in CL-treated WAT and are 

present in vicinity of proliferating progenitors. Therefore, we are proposing that macrophages 

are a major contributor of niche environment that regulate progenitor behaviors. 
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1.8   Adipose tissue macrophages  

Macrophages are highly heterogeneous hematopoietic cells found in almost every tissue 

throughout the body (71). Macrophages monitor tissue environment for early sign of infection or 

tissue damage, responsible for innate immune system and can adapt and respond to a large 

variety of microenvironmental signals. Recent publications have shown that macrophages are 

recruited to adipose tissue, displaying tremendous heterogeneity in their activities and functions 

(72-74).  

Macrophage can be activated by two distinct programs, classical and alternative 

activation (75). Classical activation is initiated by the products from bacterial infection, including 

lipopolysaccharide (LPS) and interferon-, generating highly pro-inflammatory macrophages 

(M1) (76). On the other hand, alternative activation is triggered by products from parasitic 

infection, such as IL-4 and IL-13, producing anti-inflammatory macrophages (M2) (77). These 

anti-inflammatory macrophages are usually associated with tissue repair and regeneration/ 

remodeling phenomenon (78). A large number of differentially regulated markers (Table 2) has 

been identified and the most distinguishable parameter is the expression of key enzymes that 

regulate arginine metabolism (79). Macrophages in the classical activation utilize arginine to 

generate nitric oxide (NO) via inducible nitic oxide synthases (iNOS). Alternatively activated 

macrophages upregulate argniase 1 and metabolize it into precursors for DNA and collagen 
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synthesis required for tissue remodeling (79)..  

While pro-inflammatory classically activated macrophages (M1) are found in 

obese/insulin resistance states, resident macrophages, such as those present in the adipose 

tissue of lean mice, display the alternatively activated phenotype (M2) (80). Infiltration of M1 

macrophages into expanding AT with obesity become primary source of inflammatory cytokines 

that promote insulin resistance (79). On the contrary, protective effects of M2 macrophages 

have been reported in several metabolic disease models. For instance, M2 macrophages 

enhance insulin sensitivity and macrophage polarization toward alternative state is mediated by 

PPAR dependent mechanisms (79, 81), Surprisingly, a recent study demonstrated that M2 

macrophage in adipose tissue secret catecholamine to increase catabolism and sustain 

thermoregulatory function during cold exposure (82). Several in vitro cultures studies showed 

that macrophage-conditioned medium inhibit preadipocyte apoptosis and promote survival in a 

PDGF-dependent manner (83, 84). However, effects of M2 macrophages on in vivo adipocyte 

progenitors are not well understood.  
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Table 2. Macrophage heterogeneity  

 M1 (proinflamatory) M2 (anti-inflamatory) 

Activator Classical activation by IFN- and LPS 

 

Alternative activation by IL-4 or IL-13 

 

Phenotype Increased production of pro-inflammatory 

cytokines, iNOS and ROS; increased 

expression of MHC class II molecules and ; 

increased antigen presentation; and 

increased microbicidal activity 

Increased endocytic activity; increased 

expression of mannose receptor, dectin-1 

and arginase; increased cell growth; 

increased 

tissue repair; and increased parasite killing 

Molecular 

marker 

Pro-inflmammtory cytokines (IL-12IL-6, TNF-

a) 

CD86 

Ariginase1, IL-10, YM1, FIZZ1 

Physiologic 

function 

Promotion of Th1 response 

Killing of intraceluar pathogens 

Promotion of Th2 response 

Encapsulation and clearance of parasites 

Tissue remodeling and immunoregulation 

   

 

 

1.9  Hypothesis and aims of the project  

The organizing hypothesis of this research is that WAT contains brown adipocyte 

progenitors which contribute to β-adrenergic remodeling. Our preliminary findings together with 

published data lead to the following specific hypotheses: 1) ADRB3 stimulation induces the 

proliferation of iBA progenitors within WAT. 2) The ADRB3 stimulation recruits macrophages and 

create adipogenic niches that provide developmental cues for the fate determination of the 

progenitors toward brown adipocytes. 3) PDGFRα+ progenitors in WAT possess stem cell 
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characteristics, including clonogenicity, self-renewal and multipotent differentiation. 4) 

PDGFRα+ cells become WA in response to white adipogenic stimuli. 

The goal of this PhD project is to fully characterize iBA progenitors and their niches in 

mouse adipose tissues, and to identify molecular mechanisms by which β-adrenergic 

stimulation promotes proliferation and brown adipogenesis within WAT. This hypothesis will be 

tested by three specific aims: (1) To characterize the molecular phenotype, behaviors and fates 

of iBA progenitors (PDGFRα+ cells) following ADRB3 stimulation in WAT. (2)  To determine the 

role of adipose tissue macrophages (ATM) on the progenitor activity. (3) To examine stemness 

and differentiation potentials of FACS-isolated PDGFRα+ cells. (4) To investigate their 

contribution to WA formation during normal growth and HFD feeding. 

This is an initial step in a broader research objective to determine if there are iBA 

progenitors in human white adipose tissue, and to determine if enhancement of BAT 

development via pharmacological intervention or cell therapy is feasible and beneficial in a 

clinical setting. Data generated from these experiments will improve our understanding of 

adipocyte biology, providing valuable information on adipocyte progenitor lineage specification 

and mechanisms that control adipocyte progenitors. Finally, data obtained from these studies 

may contribute to the development of new anti-obesity therapies that target adipose progenitor 

pools to recruit beneficial adipocytes. 
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Figure 2. Cellular plasticity in remodeling of adipose tissue by ADRB3 stimulation. (1) In response 

to continuous ADRB3 stimulation, (2) WA liberated FFA and FFA-derived signals and recruit immune cells. 

(3) iBAP that reside in close apposition with vasculature start to proliferate and migrate. Immune cells 

may secrete mitogenic signals to induce proliferation and migration of the iBAP. (4) Interaction with other 

niche components may direct progenitors to differentiation in BA. (5) The progenitors undergo multiple 

divisions, generation iBA clusters. 
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Chapter 2.  Methods and Materials 

 

2.1. Mice 

129S1/SvImJ (129S1; stock no. 002448), C57BL/6J (C57B/6; stock no. 000664), 

B6.129S4-Pdgfra_tm11(EGFP)Sor/J (Pdgfra-H2BeGFP; stock no. 007669), C57BL/6-Tg(CAG-

EGFP)1Osb/J (GFP; stock no. 003291), and B6.Cg-Gt(ROSA)26Sor_tm9(CAG-tdTomato)Hze/J 

(85) (R26-LSL-tdTomato; stock no. 007909) were purchased from the Jackson Laboratory. 

Pdgfra-CreERT2 mice (64) were obtained from William Richardson (University College London). 

All animal protocols were approved by the Institutional Animal Care and Use Committee at 

Wayne State University. 

For continuous -adrenergic stimulation, mice were infused with CL (0.75 nmol/h) by 

mini-osmotic pumps (ALZET) for up to 7 days. For BrdU cumulative labeling, BrdU (Sigma, 20 

g/h) were infused with CL for 7 days by mini-osmotic pump. For EdU flash-labeling, mice were 

injected with EdU (Invitrogen, 2 nmol/mouse, I.P.) at indicated time described in the text. For 

dual pulse labeling, mice were injected first with EdU and then BrdU (2 mg/mouse) with 24 h 

interval. BrdU was detected by immunostaining, as described below. EdU was detected 

according to the instructions of the manufacturer (Invitrogen). Intestines from each individual 

mouse were used as positive controls for EdU or BrdU detection. 
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Cre recombination in double transgenic mice (Pdgfra-CreERT2/R26-LSL-tdTomato) was 

induced by administering tamoxifen dissolved in sunflower oil (Sigma, 300 mg/kg, P.O.) on each 

of 5 consecutive days. CL treatment or HFD were started 1 week after the first dose of 

tamoxifen. We included no tamoxifen controls to confirm that tdTomato expression is 

undetectable in the double transgenic mice gavaged with vehicle (oil only).  

For high fat diet experiment, 60% fat diet was introduced at 5-6 weeks of age and 

continued for 8 weeks. Body weight was registered regularly. Body composition was analyzed 

by quantitative nuclear magnetic resonance (NMR) using an EcoMRI apparatus (Echo Medical 

Systems, Houston, TX). 

For tyrosine kinase inhibitor experiment, 129S1 mice were treated with sunitinib 

(50mg/kg/day) or vehicle (1% methylcellulose solution) alone by gavage for 7 days. Two hours 

after the first sunitinib treatment, CL-loaded miniosmotic pumps were inserted, and mice with 

sham-surgery were used as control. One week after CL infusion and sunitinib treatment, the 

animals were sacrificed by cervical dislocation. Adipose tissue and intestine were collected, and 

processed for mRNA, protein, and histology analysis. 

 

2.2. Tissue processing and immunostaining 

Tissues were fixed with 10% formalin overnight at 4 °C, paraffin embedded and 5 m 
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thick sectioned. For whole mounts, fixed tissues were minced into ≤2mm3 small pieces. 

Immunostaining was performed in either paraffin sections or whole mount tissue. Samples were 

pre-incubated with permeabilization buffer (0.5% TritonX 100 in PBS) and blocking buffer (5% 

normal donkey serum in PBS) for 30 min at room temperature, and then incubated sequentially 

with primary antibody and secondary antibody, all in blocking buffer. For BrdU detection, paraffin 

sections were incubated in 2 N HCl for 45 min at 37 °C before permeabilization. After washing 

with TPBS (0.1% Tween 20), samples were counterstained with DAPI. Slides were coverslipped 

in mounting medium (Dako) and examined by fluorescence microscopy. Species matched IgG 

were used as nonspecific controls. Primary antibodies used for immunostaining were: PDGFR 

(goat, R&D, 2.5 µg/mL), PPAR (rabbit, Cell Signaling 1:200), PLIN1 (rabbit (86), 1:500; goat, 

Everest, 1:250), UCP-1 (rabbit, Alpha Diagnostic International, 2.5 µg/mL; goat, Santa Cruz, 

1:100), PDGFRβ (rat, eBioscience, 1:100), CD34 (rat, eBioscience, 1:100), SMA (mouse, Sigma, 

1:200), GFP (goat, GeneTex, 1:300) and tdTomato (rabbit, Clontech, 1:100). Following 

secondary antibodies were used: Alexa Fluor 488– or 594– conjugated donkey antibody to goat 

IgG, goat or donkey antibody to rabbit IgG, goat antibody to rat IgG (Invitrogen, 1:1,000), and 

Cy5-conjugated goat antibody to rabbit IgG (Jackson Labs, 1:200). 
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2.3. Adipocyte sizing and counting 

Total adipocyte numbers in eWAT of mice from the HFD study were calculated as 

previously described (87). Briefly, eWAT adipocyte cell sizes (>300/mouse) were determined 

from phase-contrast images of fixed whole mounts using IPlab software, and mean triglyceride 

(TG) mass/adipocyte calculated as = 0.4790/106  [3.2  diameter + (diameter)3].  Tissue 

adipocyte cellularity determined by dividing tissue TG content by mean fat cell TG mass. Total 

tdTomato+ adipocytes were estimated by extrapolation from the number of cells counted in 10 

mg samples. 

 

2.4. WAT SVC and adipocyte fractionation 

Adipose tissues were washed with PBS, minced and digested with type II collagenase (2 

mg/mL) in KRBB containing 10mM HEPES (pH 7.4), and 3% BSA for 1 h at 37 °C. Preparations 

were passed through a 300 m mesh, and centrifuged at 500g for 5 minutes. Floating 

adipocytes were collected by aspiration. Pellets containing the stromal vascular (SV) fraction 

were incubated in red blood cell lysis buffer for 5 min at room temperature, passed through a 40 

m mesh and then collected by centrifugation at 500 g for 5 min. The resultant cell preparations 

were subjected to immunostaining or flow cytometry.  
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2.5. Flow cytometry 

For FACS analysis, SV fractions from mouse WAT were resuspended in PBS plus 2% 

FBS, and 0.5mM EDTA. Cells were incubated with anti-PDGFR (CD140a) -PE, and other cell 

surface marker antibodies for 30 min on ice. Antibodies used were anti-CD34-FITC, anti-Sca1-

FITC, anti-CD24-FITC, and IB4-FITC. For PDGFR staining, SV fractions from Pdgfra-

H2BeGFP mice were incubated with anti-PDGFR (CD140b) -PE. This strategy was adopted 

because the signals for APC-conjugated anti-PDGFR� antibodies were too low to permit 

quantification with available anti-PDGFR antibodies. Species matched IgG were used as 

nonspecific controls. For cell sorting, SV cells from GFP mice were labeled with anti-PDGFR 

(biotynylated, R&D system) and streptavidin-PE sequentially. SV fractions from Pdgfra-reporter 

mouse WAT (Pdgfra-H2BeGFP or Pdgfra-CreERT2/R26-tdTomato) were sorted based on native 

fluorescence (GFP or tdTomato, respectively). 

Antibodies used for flow cytometry were: PDGFR (-PE, Biolegend, 1:200), CD34 (-FITC, 

Biolegend, 1:100), Sca1 (-FITC, eBioscience, 1:200), IB4 (-FITC, molecular probe, 1:50), CD24 

(-FITC, Biolegend, 1:1000), PDGFRβ (-PE, Biolegend, 1:100). 

 

2.6.  Cell culture of FACS-isolated cells 

SVCs of adipose tissue from Pdgfra-H2BeGFP mice were FACS-sorted by GFP 
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fluorescence. Single cell sortings were performed on a Matrigel coated 96-well plate. 

Proliferating clones were maintained for 2 weeks in growth medium (DMEM supplemented with 

20% FBS and 2.5 ng/ml bFGF), and adipogenic differentiation was induced by adipogenic 

induction medium (DMEM with 20% FBS, 1g/ml Insulin, 0.25M dexamethasone, and 0.5 mM 

1-methyl-3-isobutylmethyl-xanthine (IBMX). Three days later, clones were place in DMEM with 

20% FBS and 1 g/ml insulin for 4 days. A minimum of 39 colonies derived from the PDGFR+ 

single cells in each depot was analyzed for the adipogenic differentiation. Colonies were stained 

for Lipid (LipidTox) to identify adipocytes and UCP1 to identify BA.  

In a separate experiment, FACS-purified GFP+ and GFP- cells were collected by 

centrifugation at 500 g for 5 min, seeded at density of 2.5 x 104/well in 48-well plates, and 

expanded in growth medium. For adipogenic differentiation, confluent cells were exposed for 7 

days to insulin (1 g/ml) in DMEM supplemented with 10% FBS. For the acute -adrenergic 

stimulation, cells were treated with isoproterenol (10 µM) for 4 h. 

 

2.7.  Transplantation of FACS-isolated cells 

FACS-purified PDGFR+ and PDGFR- cells from GFP mice were collected by 

centrifugation at 500 g for 5 min. For each fraction, 105 cells were immediately mixed with 

Matrigel (150 l) and injected subcutaneously into the hind limbs of syngenic recipient mice 
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(C57B/6) that were anesthetized using Avertin. Entire transplants were collected after 4 weeks, 

and stained for PPAR, PLIN1, or lipid (nile red). Donor cell-derived adipogenesis in transplants 

was calculated by the number of GFP+ adipocytes (PPAR+ nile red+) divided by the number of 

total adipocytes.  

 

2.8.  Macrophage depletion 

Mice were injected with 300ul (approximately 110 mg/kg of clodronate) liposomes i.p. or 

equal volume of PBS liposomes. The injection was repeated every second days to maintain 

depletion. CL-loaded pumps were inserted after the second injection and macrophage depletion 

was confirmed by immunostaining and qPCR to detect macrophage specific marker expression. 

 

2.9.  Explant cultures: Organotypic culture 

Epididymal WAT was dissected from tamoxifen-treated Pdgfra-CreERT2/R26-LSL-

tdTomato mice, washed with PBS, and individual pieces of tissues were transferred to standard 

24-well plates or 35 mm dishes with poly-l-lysine-coated glass bottoms for imaging. Tissues 

were incubated for 5 min at 37 °C without medium to promote adherence, and then tissues were 

cultured in DMEM supplemented with 10% FBS. After reaching full confluence, cultures were 

exposed to insulin (1 g/ml) in growth medium for 4 days, and then exposed to EdU (10 M) 2 h 
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before fixation. Fixed cultures were stained for EdU, UCP1 and PLIN1 to assess proliferation 

and differentiation. 

 

2.10.  Migration assay 

To examine the effect of PDGF, OPN on chemotactic migration of PDGFRA+ cells, 

transwell assays were performed using cell culture inserts (8-mm pore size, BD Bioscience). 

Stromavascular fraction of eWAT from h2BeGFP mice were suspended at 2X10^5 cells/ml in 

DMEM with 0.1% BSA, and 0.2 ml of the suspensions were placed on the upper surfaces of the 

inserts (4X104/ well of 24-well plate). The medium (0.6 ml, 0.1% BSA DMEM) containing PDGF-

AA (Invitrogen, 50 ng/ml) or OPN (R&D system, 200 ng/ml) as a chemoattractant was added in 

the lower well (Falcon 24-well plate, BD Falcon). The cells were allowed to migrate to the lower 

surface of the membrane for 6 h and 16 h at 37°ْC. The unmigrated cells on the upper surfaces 

were wiped off using cotton swabs, and the inserts were washed with PBS twice, fixed with 4% 

paraformaldehyde for 15min at RT, permeabilized with 0.5% TritonX in PBS and stained with 

DAPI for 10 min. Membranes were subsequently mounted onto a microscope slide using 

mounting medium (Dako). The migratory activity was denoted as the average number of 

migrated GFP+ cells and GFP- cells. Each cell fraction was counted manually in 5 random 10X 

fields for each condition with triplicate repeated measure. No serum (0.1% BSA) and 10% FBS 
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serum containing medium were used for negative and positive controls.  

 

2.11.  Microscopy 

Fluorescence and bright-field microscopy was performed using an Olympus IX-81 

microscope equipped with a spinning disc confocal unit, and 40X (0.9NA) and 60X (1.2NA) 

water immersion objectives, using standard excitation and emission filters (Semrock) for 

visualizing DAPI, FITC (Alexa Fluor 488), Cy3 (Alexa Fluor 555, 594, Nile Red) and Cy5 (Alexa 

Fluor 647, LipidTox), as described (88). Confocal z-stacks were captured for whole mount tissue 

by imaging up to 12 optical sections at 0.4-1 m increments. Raw data of single optical sections 

(paraffin sections) or confocal z-stacks (whole mount tissues) were processed using IPlabs 

software (Scanalytics, BD Biosciences) and Adobe Photoshop. 

 

2.12.  Western blot 

Protein was extracted using RIPA lysis buffer (25 mM Tris, pH 7.5, 150 mM NaCl, 1% 

Triton X-100, 0.5% Na deoxycholate, 1% NP-40, 0.5% sodium dodecyl sulfate, and 1 mM 

EDTA) containing protease inhibitors (Roche). Western blot was performed as described (89).  

Protein concentrations were measured using the standard BCA protein assay method 

(Pierce). Equal amounts of protein (40g) were loaded in each lane. Proteins were separated by 
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gele electrophoresis using precast 4-20% gel (Pierce). The gel was run at 140 V for 45-60 min. 

Proteins were transferred onto polyvinylidenedifluoride (PVDF) membranes at 0.4 A for 1h using 

Tris-glycine buffer (containing 20% methanol) in a Bio-Rad transfer system. PVDF membranes 

were then blocked in 5% milk in Tris-buffered saline with 0.05% Tween 20 (TBS-T) for 30 min at 

RT. The primary antibody was prepared in 5% milk in TBS-T. PVDF membranes were incubated 

in the primary antibody solution at 4℃ overnight. PVDF membranes were washed three times 

with TBS-T and then incubated in the secondary antibody solution in 5% milk TBS-T for 1h at RT. 

ECL Western Blotting Substrate (Pierce) was used for chemiluminescence detection.  

Antibodies used for western blot were UCP1 (rabbit, Alpha Diagnostic International, 

1:1000), OPN (goat, 1:2000), PDGFA (rabbit, Santa Cruz, 1:1000), PDGFB (rabbit, Milipore, 

1:2000), PDGFC (goat, R&D system. 1:1000), PDGFD (rabbit, 1:2000), Actin (goat, Santa Cruz, 

1:500) and GAPDH (mouse, Chemicon, 1:1000). 

 

2.13.  Gene expression analysis 

Total RNA was extracted using Trizol (Invitrogen) and mRNA was reverse-transcribed 

using Superscript III (Invitrogen) and oligo dT primers (Fermentas). 50 ng of cDNA was 

analyzed in a 20 µl quantitative PCR reaction (ABsolute Blue QPCR SYBR, ThermoScientific) 

with 70 nM of primers. Expression data were normalized to the house keeping gene peptidyl-
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prolyl cis-trans isomerase A (PPIA) using the delta-delta CT method (2-ΔΔCT), as described 

(90). Specific primer sequences used for PCR are listed in Table S1, and all other primers have 

been described previously (90, 91)  

Table 3 Primer sequences used  

Gene Forward (5’-3’) Reverse (5’-3’) 

Cd24  TGCTCCTACCCACGCAGATT GCGTTACTTGGATTTGGGGAAGCA 

Cd29  GGACCTTTTGGGTTGAGCTTATT AAAAAGTCTAACCCCCATATTGGA 

Cd34  GACTTCCCCCTTCCTCTGAC  AATCAGGACCCCTGTTCTCC 

Cidea  CTAGCACCAAAGGCTGGTTC CACGCAGTTCCCACACACTC 

Dio2  CCAGCACCGGAAAGAGGAAA TCCTTGCACCATGACCCAAA 

Elovl3  GAGAAAGGATGCCACACAAC GAGGCTCCATCTTTCTTTCC 

Fabp4  TGGGGATTTGGTCACCATCCGGT GGGCCCCGCCATCTAGGGTT 

Lpl  CGACTCCTACTTCAGCTGGC ACACTGCTGAGTCCTTTCCC 

Pdgfra  AGCAGGCAGGGCTTCAACGG ACACAGTCTGGCGTGCGTCC 

Pdgfrb  CATCATGAGGGACTCAAACT GATGGCATTGTAGAACTGGT 

Plin1  GAGTCAGCGACAGCTTCTTC CTTGACGAGAAGCGACCTT 

Sca1  GTTTGCTGATTCTTCTTGTGGCCC ACTGCTGCCTCCTGAGTAACAC 

 

2.14.  Statistical analysis 

Statistical analyses were performed with GraphPad Prism 5. Data are presented as mean 

± SEM. Statistical significance between two groups was determined by unpaired t-test or Mann-

Whitney test, as appropriate. Comparison among groups was performed using one-way ANOVA 

or two-way ANOVA, with Bonferroni posttests to determine the relevant p values. Fisher’s exact 

test was used to evaluate differences in cell distributions.   
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Chapter 3. Identification of iBA progenitors 

 

3.1  iBA in eWAT come from proliferating cells during ADRB3 stimulation. 

Previous experiments demonstrated that a significant fraction of BA induced in WAT by 

ADRB3 stimulation can be derived de novo from proliferating progenitors (43). In the present 

experiments, we investigated the contribution of proliferation to BA induction using a low dose of 

the ADRB3 agonist CL316,243 (CL) that resulted in greater levels of proliferation without signs 

of lipolysis-induced inflammation (43, 89, 90). Control and CL-treated mice were coinfused with 

5-bromo-2’-deoxyuridine (BrdU) to cumulatively label proliferating cells (Figure 3), and the 

mitotic index and the proportion of BrdU labeling in UCP1+ adipocytes were determined in 

epididymal (eWAT), inguinal (iWAT) and interscapular (BAT) fat pads.  

ADRB3 activation induced expression of UCP1 in iWAT within 3 days of treatment, 

whereas pronounced expression of UCP1 (i.e, detected by immunoblot) was observed in eWAT 

only after 7 days(Figure 3B). Under control conditions, virtually no UCP1+ cells were detected in 

WAT, and < 0.4% of nucleated cells incorporated BrdU over 7 days in WAT or BAT (Figure 3C). 

CL treatment increased the mitotic index of cells in both eWAT and iWAT; however, the 

mitogenic effect of CL was far greater in eWAT (Figures 3F). The vast majority of UCP1+ cells 

observed in eWAT were positive for BrdU (82.2 ± 3.6% of total UCP1+ cells, (Figures 3D and 
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3E), indicating most inducible BA (iBA) in eWAT came from newly-born cells. In contrast, only 

5.8 ± 3.0% of UCP1+ cells in iWAT were BrdU+ (Figure 3E and 3G). These results indicate that 

most UCP1+ cells in eWAT are derived from the induction of brown adipogenesis from 

progenitors, whereas the upregulation of UCP1+ expression in iWAT involves the conversion or 

‘transdifferentiation’ of existing WA into a BA phenotype. Cellular expression levels of UCP1 

were similar among UCP+ multilocular cells in IBAT, iWAT and eWAT (Figures 3D, 3E and 3H). 

CL had no effect on cell proliferation in BAT, further supporting differences in the origin of 

constitutive and inducible BA.  

 

 



www.manaraa.com

 31

 
Figure 3. iBA in eWAT are derived from proliferating cells during β3-adrenergic stimulation  

(A) Cumulative BrdU labeling during continuous CL316,243 (CL) treatment. A representative image of 

intestine paraffin sections stained for BrdU (red) from mice infused with BrdU for 7 days. BrdU 

continuously labeled proliferated cells from crypts through villi. (B) Immunoblot analysis of WAT from 

129S1 mice treated with CL. Equal amounts of proteins were run, and blots sequentially probed for UCP1, 

and loading controls. (C, D) Low magnification fields of adipose tissue paraffin sections from CTL (BrdU 

only) and D7 (CL + BrdU) mice double-stained for BrdU (green) and UCP1 (red). BrdU+ cells were rarely 

detected in WAT without CL treatment. (E) Higher magnification of BA in BAT and iBA (double-labeled for 
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BrdU and UCP1. (F) CL induced greater proliferation in eWAT versus iWAT (n = 4 per group, p=0.006). 

(G) Proliferation of iBA in iWAT and eWAT. Values are the percentage of BrdU+,UCP1+ to total UCP1+ 

cells. (mean ± SEM, n = 4 per group, p<0.0001). (H) in eWAT, showing comparable levels of UCP1 

expression and subcellular localization. The merged image (right, green: prohibitin, red: UCP1) 

demonstrates mitochondrial targeting of UCP1 protein in iBA. Nuclei were counterstained with DAPI 

(Blue). Bars = 20 µm.  

 

3.2.  Tracking of proliferation identifies PDGFR+ cells as potential iBA progenitors.  

We next sought to characterize the phenotype of cells that were flash-labeled with EdU 

after 1, 2, and 3 days of CL treatment (Figure 4A). Flash labeling (2 hr) demonstrated that CL 

treatment produced pronounced proliferation that peaked after 3 days of treatment (Figures 4B).  

As detailed below, proliferating cells did not express detectible PDGFR, -smooth muscle actin 

(SMA), or CD24, which are found in WA progenitors (49, 56). The recent report identifying 

PDGFR as a marker of ectopic adipocyte progenitors in skeletal muscle (57, 58) prompted us 

to examine PDGFR expression. PDGFR+ cells constituted 16.5 ± 0.7% of total cells in control 

WAT. We found nearly 80% of actively dividing cells expressed PDGFR after the first day of CL 

treatment (Figure 4C and 4D). Unexpectedly, a terminal adipocyte differentiation marker, 

Perilipin1 (PLIN1), was also expressed in numerous EdU flash-labeled (i.e., 2 hr exposure) cells, 

especially after 3 days of CL treatment. EdU+ adipocytes were small (< 10 m) and contained 

small lipid droplets, indicating that newly-differentiating adipocytes can divide (92). (We have not 

observed cell division in mature, unilocular adipocytes.) Interestingly, > 90% of EdU+ cells 
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expressed PDGFR or PLIN1 (Figure 4C – 4E), but none expressed both markers at the same 

time (Figure 4C, compare upper and lower panels). Importantly, the frequency of PDGFR 

expression in EdU+ cells declined as PLIN1 expression increased, suggesting that PDGFR+ 

progenitors might become PLIN1+ iBA over the course of CL treatment. Because the population 

of PDGFR+ cells did not change during CL treatment, it appears that some newly-divided cells 

replenish the progenitor pool while others down-regulated PDGFR and differentiated into BA.  
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Figure 4 Proliferation cells express either PDGFRA or PLIN1. (A) EdU flash-labeling. 129S1 mice 

were infused with CL up to 3 days and injected with EdU 2 h before analysis. (B) CL significantly 

increased mitotic indices of both eWAT and iWAT (p<0.0001), and the effect was significantly greater in 

eWAT versus iWAT (ANOVA interaction p=0.0033, post-test ***p<0.001) (mean ± SEM, n = 3-4 per group). 

(C) Representative images of eWAT paraffin sections triple-stained for PDGFR, PLIN1 and EdU on D1, 

D2, or D3 of CL treatment. Note that images of a given day are the same microscopic field. Top row 

shows merge of PDGFR (red) and EdU (green), while bottom row is merge of PLIN1 (red) and EdU 

(green). Arrows mark PDGFR+ EdU+ cells. Arrow heads mark PLIN1+ EdU+ cells. Nuclei were 

counterstained with DAPI (Blue). Triply stained images demonstrate that PLIN1 and PDGFR expression 

are mutually exclusive. Bars = 20 m. (D, E) Quantification of PDGFR+ EdU+ cells, or PLIN1+ EdU+ 

cells in eWAT paraffin sections (mean ± SEM, n = 3-4 per group). Nearly all proliferating cells in eWAT 

express either PDGFR or PLIN1. The percentage of PLIN1+, EdU+ cells increased over time (G, 

p=0.0004) as the percentage of PDGFR+, Edu+ cells declined (F, p=0.002).   
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To trace the fates of proliferating cells in eWAT, mice were given single injections of EdU on the 

third day of CL infusion, when proliferation is maximal, and the phenotypic characteristics of 

EdU-labeled cells were evaluated over time (Figure 5A). Over the 24 h period after flash-

labeling, the number of EdU+ cells expressing PDGFR progressively decreased as the number 

of EdU+ cells expressing PLIN1 increased (Figure 5C-5E), indicating that proliferating cells lose 

PDGFR expression as they become fat cells. By 24 h after EdU injection, most proliferating 

cells were multilocular and expressed PLIN1 (88.1 ± 4.3%) and UCP1 (85.4 ± 3.8%) (Figure 

5F).  
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Figure 5. Tracing of proliferating cells identifies PDGFR+ cells as potential iBA progenitors. (A) 

Fate tracing of cells labeled with EdU on the third day of CL treatment. 129S1 mice were infused with CL, 

injected with EdU on D3, and analyzed at indicated time points. B) Representative images of intestine 

paraffin sections stained for EdU (red) at indicated time points after EdU injection. EdU+ (red) intestinal 

stem cells that actively proliferated were detected in crypts 2h after EdU injection while EdU+ cells 

progressively differentiated over time and were detected in villi at 24h after EdU injection. ((C, D) 

Proportion of each cell type is expressed as percentage of the total EdU+ cells (mean ± SEM, n = 3-4 per 

group). PDGFR expression declined (p=0.0002) as PLIN1 expression appeared (p=0.0001) in EdU-

labeled cells. By 24 h, 85% of EdU+ cells expressed UCP1. (E) Representative images of eWAT paraffin 

sections triple-stained for PDGFR, PLIN1 and EdU at 2 h, 12 h, and 24 h after EdU injection. Top row 

shows merge of PDGFR (red) and EdU (green), while bottom row is merge of PLIN1 (red) and EdU 

(green) of the same field. Arrows mark PDGFR+ EdU+ cells. Arrow heads mark PLIN1+ EdU+ cells. (F) 
Low magnification fields of eWAT paraffin sections double-stained for EdU (green) and UCP1 (red) at 24h 

after EdU injection. Bars = 20 µm.  
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We performed an additional experiment to trace a relatively pure population of PDGFR+ 

cells by labeling cells with EdU on day 1 (Figure 6). As expected, 88.8±1.8% of EdU+ cells 

expressed PDGFR, and two days later most EdU+ cells tagged became multilocular brown 

adipocytes that expressed PPARα, PLIN1 and UCP1. Interestingly, 16.0 ± 1.6% of EdU+ cells 

labeled on day 1 retained PDGFR expression two days later (Figure 6), indicating that 

PDGFR+ cells undergo self-renewal as well as adipogenic differentiation. To test whether 

undifferentiated (PDGFR+, PLIN1-) and newly-differentiated (PDGFR-, PLIN1+) cells can 

undergo multiple divisions. CL-treated mice were injected with EdU on the first day of CL 

treatment and again with BrdU one day later (Figure 7). Data from this dual pulse labeling 

indicated that 48.0 ± 11.3% of EdU+ PLIN1+ cells (that divided on day 1) were marked by BrdU 

on day 2, demonstrating that a significant number of iBA progenitors divided more than once. 
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Figure 6. Tracing of proliferation identifies PDGFR+ cells as potential iBA progenitors.  (A) Fate 

tracing of cells labeled with EdU on the first day of CL treatment. 129S1 mice were infused with CL 

injected with EdU on D1 and analyzed 2 h (D1) or 48 h (D3) after EdU injection. (B) Distribution of 

markers in EdU+ cells (mean ± SEM, n = 3-4 per group). The pattern of PDGFRα and PPAR expression 

in EdU+ cells changed significantly between D1 and D3 (Fisher’s exact test, p<0.0001). (C) 

Representative images of eWAT whole mounts double-stained for PDGFRα (red) and EdU (green) on D1. 

Mitotic figures of EdU+ PDGFRα+ cells (arrows). (D-F) Representative images of eWAT whole mounts or 

paraffin sections on D3. (G) Triple staining for PDGFRα PPAR and EdU. (Left) Merge of PDGFRα (red) 

and EdU (green). (Right) Merge of PPAR (red) and EdU (green). (H) Double staining for PLIN1 (red) and 

EdU (green). (I) Double staining for UCP1 (red) and EdU (green). Double positive cells are marked by 

arrows. Bars = 20 µm. 
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Figure 7. iBAP undergo multiple divisions during brown adipogenic differentiation. (A, B) Double 

staining of intestine paraffin section shows that each thymidine analog labeled discrete cell populations in 

intestine: EdU-labeled cells (green) were detected in migrating populations, while BrdU-tagged cells (red) 

were located near crypts. No double-positive (EdU+ BrdU+) cells were detected. (C) Triple staining for 

PLIN EdU and BrdU. Triple positive cells are marked by arrows. Bars = 20 µm. 

 

3. 3.  Phenotypic and morphological characteristics of PDGFR+ progenitors 

Confocal imaging of whole mount adipose tissue revealed the unique morphology of 

PDGFR+ cells. These cells extended multiple thin cytoplasmic processes (~50m in length) 

that were in close proximity to stromal cells, adipocytes and capillaries (Figure 8).  Although 

sometimes coursing along capillaries, the processes of PDGFR+ cells extended into the 

interstitial space (Figure 8 arrows). PDGFR+ cells were also observed on large diameter 

blood vessels, however, these cells were not labeled by thymidine analogs, and thus do not 

contribute directly to brown adipogenesis induced by CL. As mentioned earlier, WA progenitors 

have been identified as PPAR+ pericyte-like cells that express SMA and PDGFR (49). In 
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contrast, adipose tissue PDGFR+ cells labeled immunochemically or genetically (below) were 

negative for SMA, PPAR (Figure 8A). Furthermore, unlike pericytes/adipocyte progenitors, 

stromal PDGFR+ cells were larger and did not share a collagen IV basement membrane with 

endothelial cells as do PDGFR+ pericytes (Figure 9). Analysis of eWAT stromal cells by FACS 

demonstrated that PDGFR+ cells are a subpopulation of cells expressing the stem cell markers 

CD34 and Sca1 (Figure 8B); however, FACS analysis failed to detect significant coexpression 

with WA progenitor markers CD24 and PDGFR or the endothelial cell marker isolectin IB4.  

 
Figure 8. Phenotypic and morphological characteristics of PDGFR+ cells. (A) Immunostaining of 

PDGFRα+ cells in eWAT whole mount from control 129S1 mice. (A) Stellate morphology of PDGFRα+ 

cells (red). Each cell had multiple processes, some up to 50 µm long, and contacted multiple cells, 

including adipocytes (Lipid+). PDGFRα+ cells were often in close apposition to IB4+ vasculature (green), 

but did not constitute the mural compartment, indicated by extended processes (arrows). PDGFRα+ cells 

were negative for SMA and PPAR. Nuclei were counterstained with DAPI. Bars = 20 µm. (B) FACS 

analysis on cell surface marker expression of PDGFRα+ cells. PDGFRα+ cells were uniformly positive for 

CD34 and Sca1, but negative for IB4, CD24, and PDGFRβ. The percentage of double positive cells are 

indicated on the flow profile (mean ± SEM, n = 3 independent analyses). 
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Figure 9. Morphological characteristics of PDGFR+ progenitors. (A) Double staining of whole mount 

eWAT from control 129S1 mice. Stellate–like PDGFR+ cells were often in close apposition to IB4+ 

capillaries (green), but did not constitute the mural compartment, indicated by processes (arrow) 

extending into the interstitial space. (B). Triple staining for PDGFR, IB4, and collagen IV. (Left) Merge of 

PDGFR (red) and IB4 (green) fluorescence. (Right) Merge of PDGFR (red) and collagen IV (green) 

florescence. PDGFR+ cells were enclosed by basement membrane (collagen IV+). Nuclei were 

counterstained with DAPI. Bars = 20 m.  

 

3.4  PDGFR + progenitors become BA during ADRB3 stimulation.  

3.4.1  Lineage tracing using inducible reporter system.  

 

To provide conclusive information on the fate of the PDGFR expressing progenitors, we 

performed in vivo lineage tracing with two different PDGFR reporter lines. In one series of 

experiments, we crossed Cre-responsive (stop codon floxed) reporter mice (85) with mice 

expressing tamoxifen-inducible CreERT2 under the control of PDGFR promoter (64) (Figure 

11A). In this system, treatment of mice with tamoxifen induces expression of tdTomato in 
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PDGFR+ cells via Cre-mediated recombination. Because the induction is permanent, reporter 

expression remains in all the cells descending from the originally marked cells.  

 

 Figure 10. High efficiency and 

specificity of Pdgfra-Cre/ R26-LSL-

tdTomato reporter system. A low 

magnification image of double staining of 

eWAT paraffin section from control Pdgfra-

Cre/ R26-LSL tdTomato mice treated with 

tamoxifen for 5 days. Analysis was done 7 

days after tamoxifen first dose. Red is 

tdTomato staining and green is PDGFRA 

staining. Merged image shows high 

efficiency and fidelity of tdTomato 

expression in PDGFRA expressing cells 

(PDGFR+ tdTomato+/ PDGFR+ = 57.5 ± 

5% in iWAT, 50.4 ± 3% in eWAT. n=3)  Bars 

= 20 m.  

 

 

tdTomato was not observed in the absence of tamoxifen treatment. Tamoxifen induced 

strong tdTomato fluorescence with high efficiency in adipose tissues (Figure 10: PDGFR+ 

tdTomato+/ PDGFR+ = 57.5 ± 5% in iWAT, 50.4 ± 3% in eWAT). Strong native fluorescence 

(tdTomato) was uniformly distributed throughout the cells and allowed 3D visualization of their 

fine structures in whole mount tissues. Consistent with immunostaining analysis, tdTomato-
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labeled cells were often located in the perivascular region and displayed long thin processes 

that contacted adjacent adipocytes and vasculature (Figure 11C). Prior to CL treatment, all 

tdTomato+ cells were positive for PDGFR and CD34 (Figure 11D); however, tdTomato+ cells 

did not express the developmental WA progenitor markers PPAR, PDGFR, or SMA (Figure 

11C).  

After 7 days of CL treatment, nearly half of the tdTomato expressing cells had multilocular 

morphology and expressed BA markers PPARG, PLIN1, and UCP1 (Figures 11E – 11H). 

PPARG and PLIN1 are early markers of BA differentiation that were often observed in actively 

dividing cells. In contrast, UCP1 expression was only seen in cells that were more differentiated, 

which accounts for differences in the relative abundance of the early and late BA markers (also, 

see below). While half of tdTomato+ cells were BrdU+ (Figure 11H), over 90% of tdTomato+ 

multilocular adipocytes were BrdU+, indicating nearly all BA were derived from proliferating cells. 

As expected from EdU tagging experiments, multilocular tdTomato+ cells lacked expression of 

PDGFR (Figure 11E, arrow heads), whereas stellate progenitors remained PDGFR+ (Figure 

11E, arrows). Furthermore, the percentage of tdTomato+ cells that became PLIN1+ adipocytes 

was 3-fold higher in eWAT compared to iWAT (not shown). Finally, we isolated tdTomato+ cells 

from control mice and mice treated with CL for 7 days by FACS and examined adipogenic gene 

expression (Figure 11I). Consistent with immunochemical analyses, CL treatment dramatically 
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upregulated expression of brown adipocyte markers Ucp1, Elovl3, Dio2 and Cidea. It should be 

noted that this analysis likely underestimates the effect of CL since floating adipocytes were not 

recovered.  

 

Figure 11. PDGFR expressing progenitors become BA during 3-adrenergic stimulation: Pdgfra-

CreERT2/R26-LSL-tdTomato mouse study. 

(A) Schematic diagram of the inducible Pdgfra-CreERT2/R26-LSL-tdTomato reporter system. (B) 
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Procedure of reporter induction and lineage tracing of tdTomato-labeled cells. Efficiency and specificity of 

reporter induction were analyzed 7 days after the first tamoxifen dose. Adipose tissue was analyzed 

before (D0) or 7 days (D7) after CL and BrdU infusion. (C,D) Characterization of reporter+ cells prior to 

CL treatment. Labeled cells were often found near blood vessels (IB4+) and had long processes that 

appeared to contact stromal cells and adipocytes (LipidTox+). tdTomato+ cells were negative for PPAR, 

PDGFRβ, and SMA, but uniformly positive for PDGFRα and CD34. (E-G) Characterization of reporter+ 

cells following 7 days of CL treatment. tdTomato+ multilocular adipocytes (arrow heads) lacked 

expression of PDGFRα, whereas stellate-like progenitors (arrows) remained PDGFRα+. tdTomato+ 

multilocular cells coexpressed PPAR, UCP1, and contained PLIN1+ lipid droplets. Incorporation of BrdU 

of tdTomato+ multilocular adipocytes indicates that iBA came from proliferating cells. (F, G) Low 

magnification images of eWAT paraffin sections double stained for tdTomato and PLIIN1 (F), or UCP1 (G). 

Arrows mark double positive cells. Right is a magnified view of the boxed region from left. Bars = 20 µm. 

(H) Distribution of markers in tdTomato+ cells (mean ± SEM, n = 3 per group). All tdTomato+ cells 

expressed PDGFRα and none expressed PPAR on day 0. By day 7, 47.3 ± 1.5% of tdTomato+ cells 

retained expression of PDGFRα while 52.9 ± 7.2 % of tdTomato+ cells expressed PPAR (Fisher’s exact 

test, p<0.0001). In addition, PLIN1 (38.7 ± 10.6%) and UCP1 (21.5 ± 4.4%) expression and BrdU 

incorporation (49.3 ± 13.2) were detected in tdTomato+ cells. (I) qPCR analysis of BA marker expression 

in Pdgfra-tdTomato tagged cells isolated by FACS, expressed relative mRNA levels of D7. BA markers 

were significantly upregulated in tdTomato+ cells after 7 days of CL treatment. (mean ± SEM, n = 4-5, 

Plin1: p=0.016, fatty acid bind protein 4 (Fabp4): p=0.057, UCP1: p=0.008, and Elovl3: p=0.029, Dio2: 

p=0.033, Cidea: p=0.011) 

 

3.4.2  Lineage tracing using constitutive reporter system.  

 

In a second series of experiments, chromatin-targeted H2BeGFP that was transgenically 

expressed from the PDGFR locus (Figure 12A) was used to trace the fate of PDGFR+ cells 

in the absence of ongoing PDGFR expression. Immunohistochemical analysis confirmed that 

prior to CL treatment, all GFP+ cells expressed PDGFR, but not previously-established WA 
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progenitor markers (Figures 12B and 12C). As expected, nearly 80% of cells induced to divide 

after 1 day of CL were GFP+, and few of these cells expressed PPAR+ (Figures 12E). However, 

by day 3, 55.3 ± 6.3% of EdU+ cells that divided on day 1 expressed both GFP and PPAR 

(Figures 12E and 12F). Multilocular GFP+ cells expressed PLIN1 and UCP1 that were targeted 

to lipid droplets and mitochondria, respectively (Figures 12F and 12G). It is important to note 

that these cells were negative for PDGFR protein and the presence of GFP reflected prior, not 

current, expression of PDGFR. Collectively, lineage tracing with two independent genetic 

marking systems clearly demonstrates that PDGFR+ cells are BA progenitors within WAT. 



www.manaraa.com

 47

 
Figure 12. PDGFR expressing progenitors become BA during 3-adrenergic stimulation: Pdgfra-
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H2beGFP mouse study. 

(A) Schematic diagram of Pdgfra-H2BeGFP reporter mouse. (B, C) Representative images of H2BeGFP 

expressing cells in eWAT stained for several markers before CL treatment (D0). (B) All GFP+ (green) cells 

expressed PDGFRα (red) and vice versa. (C) GFP+ cells were usually located near vasculature (IB4+). 

GFP+ cells were negative for PPAR and PDGFR. All GFP+ cells were positive for CD34, indicated by 

arrows. (D) Fate tracing of H2BeGFP expressing cells labeled with EdU on the first day of CL treatment. 

Pdgfra-H2BeGFP mice were infused with CL, injected with EdU on D1, and tissue examined 2 h (D1) or 

48 h (D3) later. (E) Distribution of markers in EdU+ cells (mean ± SEM, n = 4 per group). After the first day 

of CL treatment, 80.9% of EdU+ cells expressed GFP and were negative for PPAR. After the third day of 

CL treatment, 55.3% of EdU+ cells on D3 expressed GFP and PPAR  (Fisher’s exact test, p< 0.0001). (F, 

G) Representative images of whole mount or dissociated single cells from eWAT of Pdgfra-H2BGFP mice 

infused with CL for 3 days, showing BA marker expression in Pdgfra-GFP tagged cells (red) on D3. (G) 

Representative images of Pdgfra-H2BeGFP tagged iBA double-stained for UCP1 and ATP synthase. The 

merged image (green: ATP synthase, red: UCP1) demonstrates mitochondrial targeting of UCP1 protein 

in iBA. Bars = 20 m. 

 

 

3.5  iBA become convertible WA that can re-express UCP1 by ADRB3 stimulation.    

To determine the fate of PDGFR+ cell derived iBA after cessation of ADRB3 stimulation, 

we tagged PDGFR+ cells with tdTomato using inducible Cre recombination, induced brown 

adipogenesis with CL treatment for 1 week, then withdrew ADRB3 stimulation for 3 weeks 

(Figure 13A).  Following withdrawal of CL, tdTomato reporter tagged PLIN1+ cells exhibited a 

unilocular phenotype and lacked detectible expression of UCP1, indicating that these cells 

revert to WA phenotype (Figure 13B, Top low).  Interestingly, brief treatment of mice with CL 

triggered these cells to express UCP1 and to revert to a multilocular phenotype (Figure 13B, 

Bottom low). These BA did not incorporate BrdU (i.e., were not generated de novo), and could 
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be readily distinguished from surrounding untagged WA that remained unilocular and lacked 

UCP1 expression. Overall, the frequency of UCP1 induction was nearly identical to iWAT, in 

which UCP1 expression is triggered in convertible adipocytes in the absence of proliferation 

(Figure 13).  These data indicate that PDGFR+ progenitors are convertible adipocytes whose 

brown adipogenic phenotype depends on the level of ongoing adrenergic activation. 
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Figure 13. iBA become convertible WA that can re-express UCP1 by -adrenergic stimulation. 

(A) Schematic diagram of  reporter induction and CL treatment procedures. (B) Representative images of 

tdTomato tagged cells in eWAT stained for PLIN1 and UCP1 (B, top row) after 3 weeks of CL washout 

period tdTomato converted into WA with no detectible level of UCP1 expression. (B, bottom row) After 3 

days of CL treatment, tdTOmato tagged adipocyte become UCP1 expressing BA, indicating that they are 

convertible. (C) Low mag and High magnification image of paraffin section from CL restimulated group. 

(D) quantification of UCP1 expression in multilocular tdTomato+ adipocytes. 
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Chapter 4.  Identification of adipocyte progenitor niches 

 

4.1  Identification of cellular components in brown adipogenic niches 

4.1.1.  ADRB3-mediated proliferation in WAT correlates with CLS formation. 

Our lineage tracing studies in combination with immunohistochemical analysis have 

shown that BA arise from proliferating progenitors that expressed PDGFR, Sca1 and CD34 in 

WAT (Chapter 3). The extent of nascent BA generation from the progenitors is higher in eWAT 

compared to iWAT, even though eWAT and iWAT contained similar numbers of PDGFR+ 

progenitors. These observations raise the possibility that differences in the response of iBA 

progenitors from abdominal and subcutaneous WAT might involve depot-specific differences in 

microenvironment triggered by adrenergic activation.  

Defining progenitor niche components is essential to understand the progenitor biology 

since stem/progenitor cell niches in tissues regulate stem/progenitor cell behaviors through local 

signaling (93). Adipose tissue macrophages have been known to be involved in tissue 

remodeling and affect metabolic phenotype of adipose tissue (72, 79, 81, 91, 94). Therefore, to 

explore the possibility that macrophages may involve in progenitor activation/proliferation, we 

examined recruitment of macrophages and their correlation with proliferation of PDGFR+ 

progenitor during CL treatment. 129S1 mice were infused with CL for 3 days and injected with 
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EdU 2hr before analysis. Macrophage recruitment in eWAT and iWAT from control and CL-

treated mice were determined by immunohistochemistry and mRNA expression analysis 

(Figure 14). The number of F4/80+ macrophages was significantly increased in eWAT by CL 

treatment, and this recruitment was observed exclusively in eWAT (Figure 14A-14C). 

Consistently, expression of Emr1, the gene encoding F4/80, was significantly upregulated in 

eWAT, compared to control conditions and iWAT from CL-treated mice (Figure 14D). Triple 

staining for F4/80, PLIN1 and EdU demonstrated that macrophages formed crown-like structure 

(CLS), surrounding PLIN1 negative adipocytes and EdU+ proliferating cells were closely 

associated with CLS. CLS have been definedas cluster of macrophages that surround dead 

adipocytes to remove lipid debris from dying adipocyte. 59 ± 4.4% of EdU+ cells were found in 

close proximity with CLS (≤ 20µm), showing possible interaction between proliferating 

progenitors and macrophages (Figure 14B). Interestingly, newly differentiating EdU+ PLIN1+ 

adipocytes no longer contacted CLS, supporting the idea that macrophage trigger initial 

activation of progenitors (Figure 15). In addition, the number of CLS was higher in eWAT and 

positively correlated with levels of proliferation (Figure 14E and 14F). Together, analysis on 

adipose tissue macrophages during CL treatment suggested that CLS may contribute to form 

progenitor activation niches that promote proliferation of BA progenitors. 
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Figure 14. ADRB3-mediated proliferation correlates with CLS formation.   

(A) Representative images of WAT paraffin sections from control or CL treated S1 mice stained for F4/80 

and EdU on D3 of CL treatment. Images demonstrated close association of EdU+ proliferating cells with 

CLS. Nuclei counter-stained with DAPI. (B) Higher magnification of eWAT paraffin sections from CL 

treated S1 mice, triple-stained for F4/80 (left, green), PLIN1 (right: green) and EdU (red). Left is a 

magnified view of boxed region from (A), and right is the merge with PLIN and EdU in the same field, 

showing macrophages surround PLIN- adipocytes. (C) Quantification of F4/80+ cells during CL treatment, 

showing recruitment of F4/80+ cells in eWAT (n=3, CTL VS D3 P=0.020, eWAT vs iWAT p=0.004) (D) 

qPCR analysis for Emr1 expression, showing significant upregulation of a macrophage specific marker in 

eWAT on day 3 (n = 4 - 6 ,CTL vs. D3: p=0.0207  , eWAT vs. iWAT: p=0.0145) (E) Quantification of the 

number of CLS in WAT paraffin section from CL-treated mice (D3). (F) A positive correlation between the 

number of CLS and mitotic index (EdU+/DAPI+). >5 of 20X field images of paraffin sections from 3 of CL 

D3 mice were quantified, and individual numbers were plotted (r square= 0.7419,  p<0.0001)  
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Figure 15. Newly-differentiated adipocytes from 

proliferating cells no longer associated with CLS.  A 

Representative image of eWAT paraffin sections from CL 

treated S1 mice stained for F4/80, PLIN1 and EdU after 

three days of CL treatment. Arrows indicate newly-

differentiate adipocytes. A circled region with dashed line 

indicates CLS.  

 

 

 

 

 

4.1.2. ADRB3 recruit alternatively-activated macrophages. 

To understand how macrophage recruitment affects the inflammatory phenotype of eWAT 

during CL, we examined proinflammatory (M1) and antiinflammatoty (M2) marker expression by 

qPCR. Data indicated that expression levels of M2 macrophage markers (arginase 1 and IL10) 

were upregulated, whereas expression levels of pro-inflammatory cytokines (PAI1, Ccl2, IL6) 

were unaffected by CL treatment (Figure 16A). Triple-staining for MGL1 (M2 marker), PLIN1 

and Lipid in eWAT whole mount confirmed that M2 macrophages formed CLS and surrounded 

lipid droplets devoid of PLIN1 (i.e. dead adipocyte lipid core) (Figure 16B). CLS have been 

characterized in hypertrophied adipose tissue with advanced obesity (95). It has been proposed 

that M1 macrophages surround necrotic (PLIN negative) adipocytes to clear inert lipid droplets 
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generated from adipocyte death, becoming a major source of proinflammtory signals (73, 96). 

However, in the case of CLS found in CL-treated WAT, macrophages expressed the M2 

phenotype and were negative for CD11c, implying specialized functions of M2 macrophages in 

catabolic tissue remodeling.  

 

 

Figure 16.  Alternatively activate macrophages form CLS in eWAT during ADRB3 stimulation.  

(A) qPCR analysis for macrophage marker expression. CL increased expression levels of anti-

inflammatory (M2) markers. CL had no effect on pro-inflammatory cytokine expression levels. (n= 4-6)  

(B) Representative images of whole mount eWAT stained for MGL1, Lipid and PLIN1 from control or D3 

CL treated mice. MGL1 positive Macrophages (M2) formed CLS surrounding LipidTox positive lipid drolet 

(arrow) that avoid PLIN1 expression.  
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4.1.3 Proliferating PDGFRα+ cells actively recruited to CLS during ADRB3 stimulation. 

We have established that iBA are generated from proliferation of PDGFRα progenitors 

(chapter 3). CLS formation is correlated with the number of proliferating cells, and actively 

proliferating cells that do not express PLIN1 are closely associated with CLS (4.1.1). Since we 

observed that the majority of proliferating cells expressed PDGFRα, we examined colocalization 

of PDGFRα+ cells within CLS. As expected, PDGFRα+ cells were closely associated with M2 

macrophage aggregates as part of CLS (Figure 17). Quantification of proliferating EdU+ 

PDGFRα+ cells that were associated with F4/80+ cells (<5um distance) demonstrated that 84% 

(27 out of 32) of EdU+PDGFRα+ cells were located in close proximity with macrophages 

(Figure 17B and 17C). In control conditions, PDGFRα+ cells were found randomly scattered 

with only 15% (35 out of 225) in close association with macropahges. These data suggest that 

PDGFRα+ cells were actively recruited to CLS becoming part of CLS.  
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Figure 17. Close association between proliferating PDGFRα+ cells and M2 macrophages.  

(A) Representative images of eWAT paraffin sections from 129S1 mice treated with CL for 3 days stained 

for F4/80 and PDGFRA. Arrows indicate PDGFRA+ cells within CLS. (B) Representative images of eWAT 

paraffin sections from 129S1 mice treated with CL for 3 days triply stained for F4/80, PDGFRA and EdU. 

Left is the merge of EdU (Green) and PDGFRA (red), and right is the merge of F480 (Green) and 

PDGFRA (red). EdU,PDGFRA double positive cells (proliferating progenitors) were closely associated 

with F480+ macrophages forming CLS. (C). Representative images of eWAT cryosections triply stained 

for MGL1, PDGFRA and EdU. Left is the merge of EdU (Green) and PDGFRA (red), and right is the 

merge of MGL1 (green) and PDGFRA (red).  

 

4.1.4  Depletion of macrophages suppresses proliferation of BA progenitors. 

To determine whether macrophages have a critical role in providing mitogenic signals to 



www.manaraa.com

 58

the adipogenic niche, we examined if depletion of macrophages resulted in suppression of 

progenitor proliferation. Selective depletion of macrophages was achieved by injection of 

clodronate-containing liposomes. Liposomes are readily taken up by phagocytic cells, and 

consequently induce apoptosis of macrophages (97). Clodronate (CD) suspension 

(300l/mouse) was administered (I.P) every second day to maintain macrophage depletion 

(Figure 18A). Control mice were injected with an equivalent volume of PBS-loaded liposomes. 

Mice received 3 days of CL infusion (0.75nmol/hr), were injected with EdU 2hr before sacrifice, 

and progenitor proliferation in each condition was analyzed. We confirmed depletion of 

macrophages by quantitative PCR analysis and showed decreased levels of macrophage 

specific marker expression in CD-treated versus control mice (Figure 18B). Macrophage 

depletion led to a significant reduction in the proliferation level in CL-treated eWAT (Figure 18C 

and 18D). Together these results indicate that macrophages critically provide the adipogenic 

niche with mitogenic signals and that macrophage-mediated activation of progenitors is at least 

in part responsible for the brown adipogenesis in CL treated eWAT.  
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Figure 18. Macrophage depletion reduces mitogenic effect of CL in eWAT.  

(A) qPCR analysis for macrophage specific gene expression. A pan-macrophage marker, Emr1 and 

alternatively activated macrophage markers, IL-10 and Arg1 were depleted to the same level of controls. 

(n=4-6, * p<0.05). Level of Spp1 expression, a cytokines known to be secreted from macrophages, was 

reduced in CD treated group. (B) Representative images of eWAT whole mount from 129S1 mice treated 

with CL for 3 days double-stained for F4/80 and EdU. Clodronate treatment depleted macrophages, and 

reduced cell proliferation in eWAT during CL treatment. Nuclei counterstained with DAPI. Bar=20um. (C) 

Quantification of mitotic index. 
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4.2  Identification of molecular niche factors that activate progenitors 

4.2.1  OPN is highly expressed in CLS-associated macrophages.   

As the trafficking of macrophages to adipose tissue critically depends on the chemo-

attractants, such as TNF-α, CCL2, we examined expression levels of several chemokines by 

global gene expression profiling. Our microarray analysis demonstrated that SPP1, the gene for 

osteopontin (OPN), is the only chemoattractant upregulated during CL treatment. OPN is the 

primary phosphorylated glycoprotein of bone and is also expressed in a wide variety of other 

cells and tissues, including immune cells (98). OPN can be cleaved by both thrombin and MMPs, 

and full length and processed forms of OPN can engage a number of receptors, such as 

integrins and CD44 (99). While OPN has a central role in bone remodeling (100, 101), mounting 

evidence suggests that OPN also participates in immune responses (99), such as macrophage 

and neutrophil migration (98, 102) and wound healing (103). Thus, OPN is considered to be a 

chemotactic factor and a cytokine that possess pleiotropic functions.  

We confirmed upregulation of OPN by western blot and qPCR, and found that OPN at 

protein and mRNA levels was significantly upregulated and peaked at D2, prior to D3 that 

showed maximal proliferation and macrophage recruitment (Figure 19A and 19B). This implies 

that OPN may function as a chemoattractant to induce infiltration of macrophages from 
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circulation. In addition to recruitment of macrophages from circulation, directional migration 

within the microenvironment can be achieved by a local gradient of chemoattractant. If OPN is a 

key niche factor that recruits and activates progenitors and niche components, it should be 

accumulated within CLS, the potential adipogenic niches. Therefore, to examin localization of 

OPN expression within tissue, histologic sections of eWAT from CL- treated mice were stained 

for OPN, and F4/80. Indeed, OPN expression was colocalized in macrophages that formed CLS 

(Figure 19C), further supporting our hypothesis that OPN recruits macrophages and potentially 

progenitors to form adipogenic niches.   

 

Figure 19.  OPN are upregulated by ADRB3 stimulation, and are highly expressed in CLS-

associated macrophages. (A) Immunoblot analysis of eWAT from 129S1 mice treated with CL at the 

indicated day. full-length and fragmented form of SPP1 were detected in CL treated group, indicating 



www.manaraa.com

 62

increase in level of expression and cleavage-mediated activation of SPP1. (B) Quantification of 

immunoblot, (n=4-6, * p<0.05). (B) qPCR analysis on SPP1 expression. (C) Representative images of 

eWAT paraffin sections from 129S1 mice treated with CL for 3 days double-stained for F4/80 and SPP1. 

Nuclei counterstine with DAPI. Bar=20um. 

 

4.2.2  PDGFC is highly expressed in CLS-associated macrophages.   

To define candidate signaling factors expressed by macrophages that could mediate 

proliferation of PDGFRα+ progenitors, we analyzed mRNA expression for growth factors that 

have been implicated in cell mitosis. Although the migration and proliferation have been 

attributed to many factors, our particular interest was possible involvement of PDGF signaling, 

because PDGF receptor expression is one of the prominent characteristics of progenitor cells 

and PDGF is an important mitogenic/chemotactic regulator, known to be secreted from 

macrophages in many circumstances such as injury- repair, and regeneration (104-106) 

We first examined gene expression levels of four PDGF isoforms and found no significant 

changes in mRNA and protein level during the course of CL treatment. It is highly likely that the 

heterogeneous nature of the tissue may confound molecular analysis because signals from 

small cell populations can be diluted in a given tissue lysate, even though the molecular 

changes are sufficient to direct cellular communication within microenvironment. Therefore, we 

detected PDGF on histologic sections by immunostainging that enables direct microscopic 

visualization of local distribution and found high concentration of PDGFC expression in 



www.manaraa.com

 63

macrophages forming CLS. (Figure 20B). Interestingly, the level of processed active form was 

increased during the course of CL treatment, suggesting possible involvement of ECM 

remodeling enzymes (107) (Figure 20A). In a serial section, recruitment of PDGFRα+ cells in 

CLS was observed (Figure 20C), indicating PDGFRα+ cells actively migrated toward CLS. 

 

Figure 20.  PDGFC are upregulated by ADRB3 stimulation, and are highly expressed in CLS-

associated macrophages. (A) Immunoblot analysis of eWAT from 129S1 mice treated with CL at the 

indicated day. All known isoform of PDGF ligand were analyzed. Full-length and processed form of 

PDGFC were detected in CL treated group, indicating increase in cleavage mediated activation of 

PDGFC. (B) Representative images of eWAT paraffin sections from 129S1 mice treated with CL for 3 

days double-stained for F4/80 and PDGFC. Nuclei counterstained with DAPI. (C) A serial section adjacent 

to (B) stained for PDGFRA and F480. Indicating recruitment of PDGFRA+ cells in close proximity to the 

region that had concentrated PDGFC expression. Bar=20um. 
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4.2.3.  Proliferating PDGFR cells contain elevated levels of tyrosine-phosphoproteins 

Next, we sought to determine PDGFRα activation during CL treatment by immunostaining 

for phospho-tyrosine (p-Tyr). Data showed colocalization of concentrated p-Tyr staining with 

PDGFRα in eWAT from CL-treated mice. Especially, p-Tyr was detected in clusters of PDGFRα 

expressing cells that were presumably present within CLS (Figure 21). p-Tyr was also detected 

in other cell types that do not expressed PDGFRα, implicating the activation of other tyrosine 

kinases during CL-induced remodeling processes.  

 

 

Figure 21. Detection of p-Tyrosin within CLS 3 days after CL treatment: potential involvement of 

RKT activation in PDGFRα+ progenitor migration and proliferation.   

Representative images of eWAT paraffin sections from 129S1 mice treated with CL for 3 days double-

stained for p-Tyr and PDGFRα. The merged image (right) shows that PDGFRα+ cells contained p-

tyrosine, indicating possible PDGFRα activation. Nuclei were counterstained with DAPI. Arrows indicate 

double positive cells. Bar=20um.  

 

 

4.2.4 PDGF and OPN are chemo-attractants for dissociated PDGFR+ cells. 

To test the specific role of PDGF ligands and SPP1 on progenitor migration, we tested 

migration of PDGFR+ cells by a transwell migration assay. We used SVF of WAT from Pdgfra-
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H2BeGFP mice to examine migration of PDGFR+ cells and PDGFR- cells at the same time.  

Data indicate that GFP+ cells preferentially migrated along with PDGF and OPN gradients 

toward lower chambers compared to control conditions (Figure 23). While PDGFAA had no 

effect on GFP- populations, OPN induced migration of GFP- cells, which can be explained by 

the ability of OPN to recruit other cell types, including macrophages. 

 

Figure 22. PDGF and OPN are 

chemo-attractants for 

dissociated PDGFR+ cells.  

(A) Representative images of 

bottom of transwell stained with 

DAPI 16 hours after plating, 

showing higher level of migration 

of GFP+ cells. (B) qunatificcation 

of GFP+ cells and GFP- cells 6 h 

and 16h after plating. PDGFA and 

OPN treatment induce migration of 

GFP+ cells (n=3, p<0.05), CTL 

(control): 0.1% BSA DMEM, 

PDGFA (50ng/ml), OPN 

(200ng/ml), P+O: PDGFA 

(50ng/ml) + OPN (200ng/ml).  
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4.2.5.  Inhibition of RTK reduced brown adipogenesis during CL treatment.  

If PDGF signaling is a critical factor in the activation of progenitors, then brown 

adipognesis from proliferating cells should be diminished by blockade of PDGFR activation. To 

test this, we inhibited RTK auto-phosphorylation by a pharmacological agent, sunitinib (108, 

109) and examined BA differentiation during CL treatment (Figure 22A). Analysis of the 

EdU/UCP1 double positive fraction demonstrated that 7 days of co-administration of sunitinib 

with CL reduced BA generation by 82% (76 ±3.9 % in CL v.s. 13 ± 1.1 % in CL+RTKX) (Figure 

22B and 22C). Consistently, the expression level of UCP1 was downregulated by sunitinib 

treatment in the CL treated group; however, other catabolic gene expression was not affected by 

RTK inhibition (Figure 22D). This could be explained by a UCP1-independent metabolism 

occurring mostly in existing WA in CL-treated WAT (13), and possible involvement of 

compensatory mechanisms. In our experimental conditions, macrophage recruitment during CL 

treatment is a transient phenomenon that peaks on day 3 and is gradually resolved by catabolic 

remodeling of adipose tissue and incorporation of newly generated BA from progenitor cells by 

day 7. Interestingly, pharmacological blockade of RTK activity in CL-treated mice led to an 

impaired resolution process and caused persistent stress, indicated by sustained Emr1 and 

Spp1 levels, pointing to a critical role of PDGFR+ cell activity in this catabolic remodeling 

process. It is highly plausible that newly differentiated BA are a key for the timely resolution of 
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this macrophage-initiated process.  

 
Figure 23. BA differentiation was reduced by sunitinib treatment. (A) Schematic diagram of CL and 

RTKX (sunitinib) treatment procedures. (B) Representative images of eWAT paraffin sections from 129S1 

mice treated with CL with/without RTKX treatment, double stained for UCP1 and EdU. (C) Quantification 

of EdU+UCP1+ cells. (n=4, *** p<0.0001)  (D) qPCR analysis for catabolic gene and macrophage 

marker expression. UCP1 expression was reduced by CL treatment (n=4, * p<0.05). Levels of EMR1 and 

Spp1 expression were sustained in RTKX treated group.  
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Chapter 5.  In vitro brown/ white dual adipogenic potential of  

PDGFR+ progenitors 

 

5.1. PDGFR+ cells are highly proliferative, migratory, and adipopgenic in 

organotypic cultures 

We further investigated the characteristics of PDGFR+ cells in organotypic culture 

system of reporter-induced adipose tissues from Pdgfra-CreERT2/R26-LSL-tdTomato mice 

(Figure 24A). Immediately after plating and during the first day of culture, tdTomato labeled cells 

were only observed within the tissue explants. By the second day of culture, tdTomato+ cells 

began to migrate from tissue, rapidly replicated and reached full confluence as early as 5 days 

after plating. Confluent cells from explants were treated with insulin for 4 days and exposed to 

EdU 2 h before fixation. Immunofluorescence analysis of PPAR expression (Figure 24B) and 

PLIN1 (Figure 24D) confirmed that tdTomato+ cells have high capacity for spontaneous 

differentiation into adipocytes (15.3% of tdTomato+ cells). When treated for 24 hours with 8-

bromo-cyclic AMP, >95% of differentiated adipocytes (those with lipid droplets > 2 µm) 

expressed UCP1, whereas newly differentiating cells with sparse droplets lacked UCP1 
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expression (Figure 24C). Flash labeling with EdU demonstrated active proliferation (4.7%) of 

tdTomato+ cells. Interestingly, various mitotic figures were observed in tdTomato+ cells that were 

EdU+  and contained small PLIN1+ lipid droplets (Figure 24D), further demonstrating that 

newly-differentiating adipocytes can divide. These findings indicate that PDGFR+ cells are 

highly proliferative and migratory in organotypic cultures. Explant outgrowth culture models, 

such as muscle fiber cultures, have been utilized as a robust and reliable method for isolating 

proliferative cells from tissue as a source of stem cells (110). The adipose tissue explant culture 

developed in current study, can establish primary cultures for expansion and in vivo 

transplantation. In addition, it can be utilized as a model system where PDGFR+ cell motility, 

proliferation, differentiation can be monitored to test effects of several candidate molecules on 

PDGFR+ progenitors.   
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Figure 24. PDGFR+ progenitors are highly mobile, proliferative and adipogenic in vitro. 

 (A) eWAT fragments from reporter-induced Pdgfra-CreERT2/R26-LSL-tdTomato mice were maintained in 

growth medium and examined over time. PDGFRα+ cells migrated from tissues and became confluent 

after 5-7 days in culture. Bar = 100 m. (B) Confluent cells were induced to differentiate with insulin for 4 

days stained for PPAR and Lipid (B, left) A low magnification field of explant cultures showing expression 

of PPAR in multilocular tdTomato+ cells. Bar = 100 m (B, right) High magnification of triple-positive cells 

(tdTomato+, lipid, PPAR) from explants. Bar = 20 m. (C) UCP1 expression in tdTomato+ adipocytes 

treated with 8-bromo-cyclic AMP. Bar = 20 m. (D) HIgh magnification image of proliferating (EdU+) 

tdTomato+ adipocytes (PLIN1+). Bar = 20 m. 
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5.2.  Clonal analysis demonstrates that PDGFRα+ cells have BA and WA potential. 

PDGFRα+ progenitors were isolated by single cell FACS, and individual colonies were 

expanded and subjected to adipocyte-differentiating conditions (57) used for establishing 

adipogenic potential in prospective analyses. While 5 % of FACS-isolated PDGFR+ cells had 

clonogenicity, numerous adipocytes were found in approximately 75% of clones derived from 

single cells (Figure 25A).  The potential of PDGFRα+ to form colonies and differentiate into 

adipocytes was similar to that reported for muscle-derived PDGFRα+ cells (57, 58). Interestingly, 

the adipogenic potential of clones derived from eWAT, iWAT and iBAT did not differ significantly 

(Fisher’s exact test, p > 0.95).  When differentiated by a cocktail of insulin, IBMX, and 

dexamethasone, all adipogenic clones contained cells expressing UCP1 to varying degrees 

(Figure 25B).   
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Figure 25. PDGFR-expressing progenitors are white and brown adipogenic in vitro. 

(A-B) Adipogenic potential of clones (n ≥ 39) derived from FACS-isolated PDGFRα+ single cells. (B) 

Representative images of adipogenic clones double-stained for UCP1 and Lipid (LipidTox).  Lipid (left) 

and UCP1 (middle) fluorescent images were merged with phase contrast, and Lipid and UCP1 images 

were merged wth DAPI-counterstained images. Bottom row is a magnified view of the boxed regions from 

top row. All adipogenic clones contained UCP1+ and UCP1- adipocytes, demonstrating WA and BA 

bipotentiality of PDGFRα+ progenitors. Bar = 100 m. (C) Adipogenesis of 3T3 L1 cells were induced with 

the same differentiation protocol used in this clonal analysis, and then stained for UCP1, confirming 

absence of UCP1 expression in WA cell line. 
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We also tested the in vitro differentiation potential of PDGFR+ cells that were isolated 

from WAT of Pdgfra-H2BeGFP mice by FACS (Figure 26A). Each fraction was expanded under 

growth conditions, and then exposed to insulin for 7 days to induce adipogenesis. Expanded 

PDGFRα+ cells retained expression of Pdgfra, Cd34, Sca1 (Ly6a) and CD29 (Itgb1), but did not 

express Pdgfrb or Cd24 (Figure 26B). Although both populations formed adipocytes after 

insulin treatment, the adipogenic potential of PDGFR+ population was much higher than that of 

PDGFR- population based on the proportion of lipid-laden cells in culture (Figure 26C) and the 

expression of terminal adipocyte differentiation markers (Figure 26D). This adipogenic induction 

did not require isobutylmethylxanthine and dexamethasone, which are typically used to trigger 

preadipocyte differentiation. We also evaluated whether differentiated cultures could be induced 

to express BA markers in response to -adrenergic stimulation. -adrenergic stimulation 

strongly induced expression of peroxisome proliferator-activated receptor  coactivator 1 

(PGC1) Ucp1 and Dio2 (Figure 26E), confirming brown adipogenic potential of PDGFR+ cells 

in vitro.  
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Figure 26. In vitro adipogenic potential of FACS-isolated PDGFR+ cells. (A) FACS analysis of 

H2BeGFP+ (PDGFRα+) cells from WAT. (B) qRT-PCR analysis of surface marker expression after 5-7 

days of culture in growth medium (means ± SEM, n=4). (C) Representative images of PDGFRα+ or 

PDGFRα- cells cultured in the presence of insulin (1g/mL) for 7 days. Boron-dipyrromethene (BODIPY, 

red) staining indicates higher insulin-stimulated adipogenesis in PDGFRα+ fractions. (H, I) qRT-PCR 

analysis on adipocyte gene expression. (D) Expression of adipocyte-specific markers, normalized to that 

of PDGFRa+ cells. PDGFRα+ cells were significantly more responsive to insulin-induced adipogenesis, 

compared to PDGFR- cells (means ± SEM, n=4, Pparg: p=0.002, Fabp4: p=0.004, Plin1: p=0.012, and 

lipoprotein lipase (Lpl): p=0.0003). (E) Expression of brown adipocyte-specific markers, normalized to 

levels induced by ISO. Differentiated PDGFRα+ populations (cultured in the presence of Insulin for 7 

days) were treated with vehicle (CTL) or isoproterenol (ISO, 10 µM) for 4 h before analysis. (means ± 

SEM, n=4, Ucp1: p=0.0009, Pgc1: p=0.0003, Dio2: p=0.0095, Ppara: p=0.120). Experiments were 

repeated 4 times.  
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5.3. Transplanted FACS-purified PDGFR+ cells from WAT form WA in vivo. 

As a final demonstration of the white adipogenic potential of isolated PDGFR+ 

progentiors, we transplanted PDGFR+ and PDGFR- cells, purified by FACS from WAT of GFP 

transgenic mice, into syngenic mice (C57B/6) and determined the efficiency of transplantation 4 

weeks later (Figure 27). Matrigel transplants contain a mixture of donor and recipient-derived fat 

cells (111). The donor contribution, calculated as the fraction of GFP+ adipocytes over total 

adipocytes in the Matrigel transplant, was 20-fold higher in transplants of PDGFR+ cells 

(Figure 27F). Although multilocular adipocytes were detected, none were UCP1+ BA. Moreover, 

CL treatment 4 weeks after transplantation failed to induce UCP1 expression in transplants 

(data not shown), implying a crucial role of the endogenous microenvironment in progenitor fate 

determination. This result further substantiates that PDGFR+ cells are bipotential progenitors 

that can give rise to WA or BA.   
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Figure 27. In vivo adipogenic potential of FACS-purified PDGFR expressing progenitors. 

(A) FACS analysis of PDGFRα+ cells from WAT of GFP transgenic mice. The X-axis indicates PE 

intensity (PDGFRα expression). Histogram with dashed line represents the negative control for PDGFRα 

staining. (B) Representative low magnification images of engrafted PDGFRα+ or PDGFRα- cells in 

Matrigel 4 weeks after transplantation. Bars = 50 µm. GFP (green) fluorescent images were merged with 

phase contrast (left), nile red fluorescence (middle, red) or Plin1 immunofluorescence (right, red). Images 

demonstrate abundance of GFP+ adipocytes in PDGFRα+ transplants by native fluorescence in whole 

mount tissue (left and middle) and by immunostaining on paraffin sections (right). Nuclei were 

counterstained with DAPI. (C) Quantitative analysis of GFP+ adipocytes. Donor contribution is the 

percentage of total adipocytes (nile red+, PPAR+) from the transplant that were donor-derived (GFP+). 

Values are means ± range for 2 independent experiments (p<0.0001, Fisher’s exact test). (D-E) High 

magnification images of nile red (left, red) and PPAR (right, red) in whole mount tissues. Bars = 20 µm. 
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Chapter 6.  In vivo white adipogenic potential of the PDGFR+ 

progenitors 

 

6.1.  PDGFRα+ progenitors contribute to adult white adipogenesis. 

In vitro analysis indicated that PDGFRα cells may become BA or WA, depending on 

method of induction and level of adrenergic stimulation. To test whether PDGFRα+ cells 

contribute to white adipogenesis in vivo, PDGFRα cells were tagged with tdTomato, and mice 

were maintained on chow or were fed high fat diet (HFD) for 8 weeks.  tdTomato-labeled 

adipocytes were found in isolated small clusters throughout control eWAT pads (Figure 28A).  

HFD greatly increased the number tdTomato+ adipocytes, which were found in large, extensive 

clusters throughout eWAT pads (Figure 28A). Immunofluorescence analysis of paraffin sections 

confirmed extensive co-expression of PLIN1 in tdTomato+ adipocytes (Figure 28B). 

Furthermore, all tdTomato+ cells adipocytes of controls and HFD mice were unilocular and none 

expressed UCP1 (not shown). HFD greatly increased fat tissue mass, and sizing of adipocytes 

indicated the tissue expansion was mediated largely by adipocyte hypertrophy (Figure 28C).  

Although there was considerable overlap in adipocyte cellularity between groups (not shown, p 

= 0.22), there was no overlap between chow and HFD mice in the number or density of 
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adipocytes derived from PDGFR+ cells (Figure 28D, p <.0002). Indeed, we estimate that up to 

25% of total eWAT adipocytes were derived from PDGFRα+ cells after 8 weeks of HFD versus < 

1.8% in controls.   

 

Figure 28. PDGFRα+ progenitors contribute to adult white adipogenesis under control conditions 

and during adipose tissue expansion induced by high fat feeding.  

(A) Representative images of tdTomato+ cells in eWAT whole mount from control and HFD mice. 
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tdTomato fluorescent images are merged with phase contrast (left) along with a magnified region 

illustrating tdTomato+ adipocyte clusters (right). (B) Representative images of eWAT paraffin sections 

double-stained for tdTomato and PLIN1. Images demonstrate abundance of tdTomato+ adipocytes in 

eWAT from HFD mice. (C) Effect of HFD on the weight of eWAT pads (left) and adipocyte triglyceride 

content (right). (d) The density of tdTomato+ adipocytes in these pads of mice on chow and HFD. The 

number of tdTomato+ cells was estimated in eWAT pads and proportion of tdTomato+ adipocytes is 

expressed as percentage of the total adipocytes.  Bar = 100 µm.  

 

6.2  CLS form in hyperplastic WAT and recruit PDGFRα+ cells 

Adipogenic niches in obesity model have been described as clusters of cells including 

CD68+ CD34+ macrophages and proliferating endothelial cells (112). We have identified 

adipogenic niches as M2-CLS, cell clusters of M2 macrophages and proliferating PDGFR+ 

cells in eWAT during ADRB3 stimulation. Based on our observation and published data by 

others, we hypothesized CLS may have overlapping roles in white adiogenesis under high fat 

feeding conditions. 

We examined CLS formation by immunostaining in WAT whole mounts from 8 week- 

HFD mice and found a significant number of CLS. Surprisingly, PDGFR+ cells are closely 

associated with macrophages within CLS, forming the outermost layer of CLS. Macrophages 

surrounded hypertropic adipocytes and cleared lipid debris, indicated by penetrating 

macrophages inside of the lipid droplet (Figure 29A). Contrary to the overt changes by ADRB3 

stimulation that induce synchronized cellular responses (proliferation and differentiation) in WAT, 
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the heterogeneous nature of adipose tissue expansion under high fat feeding limited 

quantitative analysis. However, these findings suggest CLS function as adipogenic niches that 

clear lipid debris from malfunational adipocytes and recruit PDGFR+ progenitors to replace 

dying adipocytes.   

 

Figure 29. PDGFRα+ cells actively recruited to CLS that clear lipid droplets in HFD induced 

hyperplastic WAT. Representative images of CLS stained for F4/80, lipid and tdTomato, found in WAT 

whole mount from HFD mice. (A-C) Lipid clearing CLS. (A) A merge of LipdTox fluorescent (red) and 

F4/80 (green). (B) A merge of tdTomato fluorescent (red) and F4/80 (green). (C) z-stack projection images 

of B. Arrows indicate tdTomato+ progenitors that recruited to F4/80+ CLS (right). (D & E) Adipogenic CLS. 

No lipid detected the center of CLS, suggesting clearance by macrophages. PDGFRα+ cells and 

numerous other cell types were recruited to CLS. PDGFRα+ cells (red) formed outermost layer of CLS. 

Small adipocytes (arrow) appeared nearby the CLS.  



www.manaraa.com

 81

Chapter 7.  Discussion 

In this study, we identified a novel population of adipocyte progenitors with in vivo dual 

adipogenic potential that respond to pharmacologic stimulation and nutritional modification ( 7.1 

& 7.3), and investigated their phenotypic characteristics (7.2) and interaction with niche 

components (7.4). 

 

7.1. PDGFRα+ cells are remodeling stem cells in adult WAT. 

With the introduction of the stem cell concept, cellular plasticity of adipose tissue has 

been investigated to explain the mechanism for its unique capacity for expansion and 

regeneration (113). It is believed that adipocyte progenitors make an important contribution to 

these dynamic changes in cellular composition and function of adipose tissue (73): however, the 

identity and nature of the progenitors remained unknown. Identification of adipocyte progenitors 

according to in vivo differentiation potential is essential to understand how adipose tissue 

remodels in response to altered metabolic status.  

Importantly, our lineage tracing studies using a PDGFR genetic reporter system are the 

first demonstration of endogeneous progenitors with in vivo brown/white adipogenic potential. 

Major efforts have been made to identify progenitor markers that are specifically expressed in 

adipose progenitors. In search of progenitor markers, several FACS-based studies 
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characterized molecular signatures of the highly adipogenic progenitors and demonstrated in 

vitro adipogenic potential of the isolated cells (56, 57, 114, 115). Even though this approach has 

proven useful in defining adpogenic potential from heterogeneous SVF from WAT, it should be 

noted that differentiation potential of isolated progenitors that can be induced in certain 

experimental conditions, do not necessarily reflect what they will become in the course of 

normal development or in response to endogenous in vivo stimuli. Therefore, lineage tracing 

that enable labeling and tracking in intact tissue is an essential tool for studying in vivo 

progenitor behavior in adult tissues (116) 

As summarized in Figure 30, the results of this current study clearly demonstrated that 

adult WAT possess white/brown bipotent progenitors: PDGFRα+ progenitors are responsible for 

BA generation induced by ADRB3 stimulation (Chapter 3), as well as WA generation during 

homeostatic turnover and hyperplastic expansion of WAT under HFD feeding (Chapter 6). Our 

clonal level analysis showed that a single cell-derived clone can differentiate into BA and WA 

under neutral adipogenic conditions (standard adipogenic cocktail), further supporting the dual 

potential of PDGFR+ cells (Chapter 5). It seems that WA differentiation may be the default fate 

of PDGFR+ cells in WAT, based on the observation that they become WA in normal 

development.  

Together, this study provides evidence for existence of adipose progenitors that 
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contribute to tissue maintenance and plasticity, leading us to propose PDGFR+ cells as 

remodeling stem cells in adult adipose tissue. Future steps include investigating their behavior 

under other adipogenic stimuli, such as injury or FFA overload. It would also be interesting to 

examine other potential fates of PDGFR+ progenitors, including a potential contribution to 

fibrosis.  

 
Figure 30. PDGFRα+ cells are remodeling stem cells in adult WAT.  

Adult mouse WAT possess white/brown bipotent progenitors: (1) Stable distribution of PDGFRα+ cells 

throughout CL time course suggest that they repopulate themselves during remodeling process. 

Clonogenicity of FACS-isolated cells support self-renewal potential. (2) WA generation during homeostatic 

turnover and hyperplastic expansion of WAT under HFD feeding. (3) PDGFRα+ progenitors are 

responsible for BA generation induced by ADRB3 stimulation. Our clonal level analysis showed that single 

cell-derived clones can differentiate into BA and WA, further supporting dual potential of PDGFR+ cells. 
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7.2. Characterization of PDGFR expressing cells in WAT. 

The PDGFR+ progenitors identified in the present experiments can be distinguished 

from previously described progenitors of WA by several criteria. Tang, et.al. (49) identified direct 

precursors of WA in rapidly growing perinatal WAT as pericyte-like cells that express PPAR and 

several pericyte markers. The PDGFR+ cells were negative for PPAR, SMA, and 

PDGFRWhile often localized near blood vessels and capillaries, they are clearly outside of 

the mural compartment, having extended processes that contact other cell types. We believe 

that PDGFRα+ progenitors described here can be distinguished from WA progenitors described 

by Rodeheffer et al (56) on the basis of tissue abundance and CD24 expression. It seems likely 

that PDGFR+ cells were a subpopulation of the isolated Sca1+ cells that Schultz et al. (2011) 

showed were capable of brown adipogenesis. However, in contrast to our experiments, cells 

isolated by these investigators required ex vivo treatment with bone morphogen-7 for BA 

differentiation and these cells were absent in eWAT. 

There is no report describing in detail the three dimensional morphology of adipocyte 

progenitors in situ. Imaging the fine morphology of PDGFR+ progenitors demonstrated their 

unique stellate morphology, characterized by thin cytoplasmic processes that cover long 

distances and contact numerous cell types. These observations suggest that PDGFR+ cells 

actively monitor the local microenvironment and might be recruited during metabolic stress or 
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damages. 

PDGFRα+ progenitors are found in numerous tissues where they appear to be involved in 

cellular repair and restoration (59, 61). For example, PDGFRα+ cells may differentiate into 

fibroblasts or adipocytes in damaged muscle (57, 58), depending on the nature of the damage. 

PDGFRα+ progenitors comprise 5% of cells in brain and contribute to oligodendrocyte formation 

in adults, and CNS remyelination following injury (117). Interestingly, the three dimensional 

morphology of brain and adipose PDGFRα+ progenitors is strikingly similar: both extend multiple 

cellular processes that contact numerous cell types and give the impression of being capable of 

monitoring the microenvironment (Richardson et al. 2011). In the case of adipose tissue, we 

suggest that PDGFRα+ cells are adult stem cells that sense metabolic stress or adipogenic 

signals, and contribute to tissue remodeling and restoration. 

 

7.3. Brown adipogenic potential of PDGFR + progenitors. 

With the re-discovery of metabolically active BAT in humans, there has been intensive 

attention on iBA appearing in WAT as a potential cellular target to treat obesity and related 

metabolic diseases, but the origin of iBA has remained unknown. Although the contribution of 

proliferating cells to iBA formation differs among WAT depots, the fact that proliferation is the 

source of the new BA provided a strategy to identify and trace the origin and fate of iBA 
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progenitors in vivo.  We established that cells marked with the proliferation marker EdU after 

one day of CL treatment expressed PDGFR, but not previously identified markers of 

developmental WA progenitors. We then used two independent transgenic models to trace the 

fate of PDGFR+ proliferating cells. The first model used tamoxifen-inducible cre-mediated 

recombination to permanently tag PDGFR+ cells immediately prior to CL treatment. These 

experiments provided compelling data demonstrating that 3-AR stimulation triggers 

proliferation of PDGFR+ cells and their differentiation into brown adipocytes In the second 

model, we examined the fate of cells that express H2BeGFP (Pdgfra promoter driven), a 

durable, but not indelible marker of PDGFRexpression and demonstrated that proliferating 

cells lose expression of PDGFR as the cells differentiated into PPAR+PLIN1+ UCP1+ 

multipocular adipocytes. 

3-AR stimulation triggered proliferation as early as the first day of CL treatment, 

generating a transiently amplifying population. Transiently amplifying populations contain small 

newly differentiated cells with PLIN1+ lipid droplets. Cell culture studies using the 3T3-L1 model 

system (118, 119) have proposed that clonal expansion precedes expression of adipocyte 

genes that lead accumulation of lipid. However, our study demonstrated that newly-generated 

adipocytes contain PLIN1-coated lipid droplets and can divide multiple times. This expansion 

appears to be the major reason why iBA are formed as clusters in eWAT. 
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7.4. Macrophages: a crucial niche component in adipose tissue remodeling. 

Our in situ analysis demonstrated that PDGFR+ cells reside in a complex three-

dimensional network, which comprises a plethora of other cell types such as, adipocytes, 

endothelial cells, interstitial stromal cells, and immune cells. Often, tissue remodeling processes 

involve alterations in cell-cell contact and signaling that lead to activation and differentiation of 

progenitors and parallel integration of newly-differentiated progenies (120). We report here that 

CLS formed during adrenergic activation are adipogenic niches that are essential for iBA 

recruitment and catabolic remodeling of WAT. CLS contained alternatively-activated (M2) 

macrophages and PDGFR+ progenitors are recruited specifically to these structures. 

Importantly, depletion of tissue macrophages with clodronate liposomes prevented migration 

and proliferation of BA progenitors during adrenergic stimulation.  M2 macrophages that form 

CLS expressed high levels of PDGFC and osteopontin (OPN), the potential niche factors that 

recruit PDGFR+ cells. Supporting our in vivo observation, PDGFR+ progenitors were highly 

mobile in organotypic culture, and exogenous PDGF ligands and OPN trigger migration of 

PDGFR+ cells in vitro migration assay. PDGFC and OPN acquire their activities after 

proteolytic processing (107). One of intriguing finding is that the processed form of PDGFC and 

OPN were highly enriched in WAT by CL treatment, implying potential involvement of proteases 
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that are responsible for the conversion of inactive proforms.  

Together, we have defined macropahges as a niche component that secrete cytokines 

(PDGFC and SPP1) to activate progenitors. Those signals seem to facilitate progenitor 

proliferation and migration at the initial step of activation, since differentiating newly-born 

adipocytes (small immature adipocytes) no longer contact with macrophages. What is unclear is 

the mechanisms by which those soluble factors regulate the fate decision of progenitor cells. 

Even though we demonstrated multiple divisions during differentiation, it is not clear whether 

proliferation of immature adipocytes also requires same mitogenic signals. Further study on the 

interplay of these niche factors at various stages is important to fully understand mechanisms 

that mediate progenitor activation and differentiation.  

We are proposing a model system where macrophages and progenitors play a crucial 

role in the adipose tissue remodeling process, as summarized in Figure 31. In our model, 

sudden lipolysis by ADRB3 stimulation causes acute FFA overload, and generates a stress 

condition (e.g. local damage). Macrophages sense this stress, secrete mediators to further 

recruit macrophages/progenitors and activate progenitor proliferation and differentiation. 

Macrophages remove lipid debris from malfunctioning or damaged adipocytes, and progenitors 

replace damaged adipocytes by differentiation to form new adipocytes. Thus, macrophages and 

progenitors function as essential effectors in this remodeling process. In contrast, other adipose 
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depots, such as subcutaneous WAT or BAT, which have higher oxidative capacity to utilize FFA, 

can handle increase lipolysis, maintaining tissue homeostasis, without causing macrophage 

recruitment or progenitor activation.  

 

 

Figure 31. Interplay between macrophages and PDGFR+ cells during WAT remodeling by ADRB3 

stimulation. In our model, sudden lipolysis by ADRB3 stimulation causes acute FFA overload, 

and generate a stress condition (e.g. local damage). Macrophages sense this stress, secrete 

mediators to further recruit macrophages/ progenitors and activate progenitor proliferation and 

differentiation. Macrophages remove lipid debris from malfunctioning or damaged adipocytes, 

and progenitors replace damaged adipocytes by differentiation to form new adipocytes. Thus, 

macrophages and progenitors function as essential effectors in this remodeling process. 
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7.5. Molecular mechanisms that regulate the fate decision of PDGFR+ cells. 

The regulatory pathway that controls the progenitor fate and behavior remains to be 

elucidated. Lipolysis may play a key role in providing a permissive environment for BA 

differentiation. FFA liberated from adipocytes has been known to function as signaling 

molecules in many circumstances. For instance, FFA can function as ligands for PPARs that are 

critical transcription factors mediating adipogenesis and BA differentiation (121, 122). Also, FFA-

derived molecules, such as prostaglandin, can induce BA recruitment in WAT (123-125). In 

addition to soluble factors, physical and mechanical factors may be involved in controlling fate 

specification of the progenitors (126). Extensive lipolysis that reduces adipocyte mass may 

disturb tissue organization and architecture, and trigger cellular responses essential for 

progenitor activation. Evidence from the literature is that the recruitment of iBA in WAT by 

adrenergic stimulation is regulated by genetic components. Consistent with published data 

showing higher levels of iBA emergence in the obesity-resistant strain of mice, we have found 

that proliferation of PDGFR+ cells is 3-fold greater in 129S1 versus C57BL6. Taken together, 

these data lead us to the hypothesis for future study that intrinsic and extrinsic factors will 

determine the behavior of PDGFRα+ progenitors in WAT during ADRB3 stimulation.  
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Chapter 8.  Future directions  

 

8.1. To identify BA/WA switches in PDGFR+ progenitors     

Identification of common progenitors for BA/ WA may offer a great opportunity to address 

the long-sought question how these progenitors switch their fate. Interplay of transcriptional 

regulation and epigenetic modification may be involved in this fate determination processes 

(127-130). Analysis of gene expression and epigenetic modification by global profiling is a very 

important future project that can enable us to discover molecular switches that regulate the fate 

decision of these cells 

 

8.2. To characterize adipose tissue macrophages during adipose tissue remodeling.   

We proposed that ADRB3 stimulation recruits M2 macrophages or induce macrophage 

polarization towards the M2 state, which seems to activate PDGFR+ progenitors by releasing 

mitogens and tissue remodeling factors. Depletion of macrophges in WAT resulted in decreased 

BA progenitor proliferation, suggestive of an essential role of macrophages in BA recruitment in 

WAT. Interestingly, M2 CLS were also observed in the white adipogenic condition of HFD fed 

mice, even though it is premature to conclude that M2 macrophages are required for WA 

differentiation. Therefore, future work needs to be conducted to further establish the phenotype 

of macrophages in WA adipogenic conditions. In addition, detailed analysis on signaling 
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molecules generated by macrophages (such as growth factors, cytokines, ECM remodeling 

enzymes (e.g. MMPs) in various adipogenic conditions will be required. Data generated from 

this approach will help us to determine whether adipose tissue macrophages have a crucial role 

as mediators of progenitor activation in WAT. 
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ABSTRACT 

 

CELLULAR PLASTICITY IN WHITE ADIPOSE TISSUE: IN VIVO IDENTIFICATION OF 

BIPOTENTIAL ADIPOCYTE PROGENITOR IN ADULT WHITE ADIPOSE TISSUE 

by 

YUN-HEE LEE 

May 2012 

Advisor: Dr. James G. Granneman 

Major: Pathology 

Degree: Doctor of Philosophy 

Nutritional and pharmacological stimuli can dramatically alter the cellular composition 

and phenotype of white adipose tissue (WAT). Nonetheless, the identity of progenitors that 

contribute to this cellular plasticity in vivo remains poorly understood. Utilizing genetic lineage 

tracing techniques in combination with in situ immunohistochemical analysis, we demonstrate 

that brown adipocytes (BA) that are induced by 3-adrenergic receptor activation (ADRB3) in 

WAT arise from the proliferation and differentiation of cells that express platelet-derived growth 

factor receptor alpha (PDGFR), CD34 and Sca1 (PDGFR+ cells). PDGFR+ cells have a 

unique morphology in which extended processes contact multiple cells in the tissue 

microenvironment. Surprisingly, these cells also give rise to white adipocytes (WA) that can 
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comprise up to 25% of total fat cells in abdominal fat pads following 8 weeks of high fat feeding.  

PDGFR+ cells isolated by fluorescence-activated cell sorting differentiated into both BA and 

white adipocytes (WA) in vitro, and generated WA after transplantation in vivo, confirming dual 

potential. Studies on the interplay of progenitors with niche components demonstrated that 

ADRB3 activation recruited alternatively activated (M2) macrophage to form crown-like 

structures (CLS) in epididymal WAT. M2 macrophages in CLS released OPN and PDGFC to 

induce progenitor migration and proliferation. Progenitor activation was dependent on PDGF 

signaling and attenuated by pharmacologic inhibition of receptor tyrosine kinases. Together, we 

identified a novel population of adipocyte progenitors with in vivo dual adipogenic potential and 

their interaction with adipose tissue macrophages. These finding provides new information on 

adipose lineage specification and have clinical implication for diabetes therapy and restorative 

medicine. 
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